期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于主题词向量中心点的K-means文本聚类算法
1
作者 季铎 刘云钊 +1 位作者 彭如香 孔华锋 《计算机应用与软件》 北大核心 2024年第10期282-286,318,共6页
K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策... K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策图进行初始类中心的选择,利用每个类簇的主题词向量替代均值作为迭代类中心。实验表明,该文的初始点选取方法能够准确地选取初始点,且利用主题词向量作为迭代类中心能够很好地避免噪声点和噪声特征的影响,很大程度上地提高了K-means算法的性能。 展开更多
关键词 K-MEANS 初始点 决策图 迭代类中心 主题词向量
下载PDF
基于局部阈值和聚类中心迭代的肺结节检测算法 被引量:5
2
作者 陈侃 李彬 田联房 《计算机科学》 CSCD 北大核心 2012年第2期302-304,共3页
肺部疾病通常以肺结节的形式表现出来。为了对肺部疾病进行诊断治疗,需要对肺结节进行准确的检测。提出了基于局部阈值和聚类中心迭代的肺结节检测算法。首先,对肺实质图像采用局部阈值算法,提取感兴趣区域(ROIs),并且计算ROIs的形态特... 肺部疾病通常以肺结节的形式表现出来。为了对肺部疾病进行诊断治疗,需要对肺结节进行准确的检测。提出了基于局部阈值和聚类中心迭代的肺结节检测算法。首先,对肺实质图像采用局部阈值算法,提取感兴趣区域(ROIs),并且计算ROIs的形态特征、灰度特征和纹理特征;其次,结合规则、聚类中心迭代和欧式距离,对ROIs进行分类。实验结果表明,所提算法能够较好地检测出孤立性结节、低对比度结节和粘连肺壁结节。 展开更多
关键词 肺结节 局部阈值 中心 欧式距离
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部