An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality co...A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.展开更多
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(20676117) the National Creative Research Groups Science Foundation of China(60421002)
文摘A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.