直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive...直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。展开更多
文摘直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。