针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学...针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVMLight在支持向量数量方面进行了比较,计算了UCI(University of California-Irvine)中的6个数据集和著名的Checkboard问题。结果表明,该自适应迭代算法确定的支持向量数一般不到SVMLight所得到的支持向量数的一半,其中70%多的支持向量被SVMLight所确定的支持向量集所包含,在支持向量选择方面具有高效性。展开更多
为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利...为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性.展开更多
文摘针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVMLight在支持向量数量方面进行了比较,计算了UCI(University of California-Irvine)中的6个数据集和著名的Checkboard问题。结果表明,该自适应迭代算法确定的支持向量数一般不到SVMLight所得到的支持向量数的一半,其中70%多的支持向量被SVMLight所确定的支持向量集所包含,在支持向量选择方面具有高效性。
文摘为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性.