针对大型矩阵奇异值分解(singular value decomposition,SVD)时使用经典算法时间复杂度较高,以及已有的量子SVD算法要求待分解的矩阵必须具有非稀疏低秩的性质,并且在计算过程中构造任意大小酉矩阵对目前的量子计算机来说实现起来并不...针对大型矩阵奇异值分解(singular value decomposition,SVD)时使用经典算法时间复杂度较高,以及已有的量子SVD算法要求待分解的矩阵必须具有非稀疏低秩的性质,并且在计算过程中构造任意大小酉矩阵对目前的量子计算机来说实现起来并不容易等问题,提出基于QR迭代的量子SVD。QR迭代使用的是Householder变换,通过量子矩阵乘法运算完成经典矩阵乘法运算过程。实验结果表明,该方法能够得到所求矩阵的奇异值及奇异矩阵,使大型矩阵的SVD具有可行性。展开更多
正交时序复用(Orthogonal Time Sequency Multiplexing,OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度...正交时序复用(Orthogonal Time Sequency Multiplexing,OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度。该文针对高速移动环境下的OTSM系统提出了一种二级均衡器:首先利用信道矩阵的稀疏性和带状结构在时域逐块进行低复杂度MMSE检测;随后采用高斯-赛德尔(GS)迭代检测进一步消除残余符号干扰。仿真结果表明,所提算法与基于单抽头频域均衡的GS迭代检测算法相比,采用16QAM调制且误码率为10–4时有1.8 dB性能增益。展开更多
对于频率交叠严重且频率成分接近的多分量信号,常用的短时傅里叶变换(Short Time Fourier Transform,STFT)和S方法(S-Method,SM)频率分辨能力不足,重构精度低.针对该问题,本文结合逆Radon变换提出了基于短时迭代自适应-逆Radon变换(Shor...对于频率交叠严重且频率成分接近的多分量信号,常用的短时傅里叶变换(Short Time Fourier Transform,STFT)和S方法(S-Method,SM)频率分辨能力不足,重构精度低.针对该问题,本文结合逆Radon变换提出了基于短时迭代自适应-逆Radon变换(Short Time Iterative Adaptive Approach-Inverse Radon Transform,STIAA-IRT)的微多普勒特征提取方法.首先采用基于加权迭代自适应的STIAA时频分析方法分析了散射点模型的微多普勒特性,然后利用逆Radon变换分离重构不同散射点的微多普勒分量.该方法在低信噪比、邻近时频分布情况下能获得高分辨的多分量信号的完整微多普勒信息,性能分析显示STIAA-IRT重构精度较高,明显优于STFT-IRT(Short Time Fourier Transform-Inverse Radon Transform)和SM-IRT(S-Method-Inverse Radon Transform)特征提取方法.展开更多
文摘针对大型矩阵奇异值分解(singular value decomposition,SVD)时使用经典算法时间复杂度较高,以及已有的量子SVD算法要求待分解的矩阵必须具有非稀疏低秩的性质,并且在计算过程中构造任意大小酉矩阵对目前的量子计算机来说实现起来并不容易等问题,提出基于QR迭代的量子SVD。QR迭代使用的是Householder变换,通过量子矩阵乘法运算完成经典矩阵乘法运算过程。实验结果表明,该方法能够得到所求矩阵的奇异值及奇异矩阵,使大型矩阵的SVD具有可行性。
文摘正交时序复用(Orthogonal Time Sequency Multiplexing,OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度。该文针对高速移动环境下的OTSM系统提出了一种二级均衡器:首先利用信道矩阵的稀疏性和带状结构在时域逐块进行低复杂度MMSE检测;随后采用高斯-赛德尔(GS)迭代检测进一步消除残余符号干扰。仿真结果表明,所提算法与基于单抽头频域均衡的GS迭代检测算法相比,采用16QAM调制且误码率为10–4时有1.8 dB性能增益。