期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Temperature evolution and grain defect formation during single crystal solidification of a blade cluster 被引量:6
1
作者 De-xin Ma Fu Wang +4 位作者 Qiang Wu Jian-zheng Guo Fu-ze Xu Zhao-feng Liu Shou-zhu Ou 《China Foundry》 SCIE 2017年第5期456-460,共5页
In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were num... In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation. 展开更多
关键词 SUPERALLOY 方向性的团结 单个水晶(SC ) 模拟 迷路的谷物(SG ) TP391.99
下载PDF
Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques 被引量:4
2
作者 Ya-feng Li Lin Liu +4 位作者 Tai-wen Huang Miao Huo Jun-sheng He Jun Zhang Heng-zhi Fu 《China Foundry》 SCIE 2017年第2期75-79,共5页
The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal(SX) turbine blades under high rate solidification(HRS) and liquid metal cooling(LMC) have... The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal(SX) turbine blades under high rate solidification(HRS) and liquid metal cooling(LMC) have been constructed using Pro CAST software, coupled with a 3D Cellular Automaton Finite Element(CAFE) model. The models were used to investigate the tendencies of stray grain(SG) formation in the platform region of turbine blades fabricated by HRS and LMC techniques. The results reveal that the LMC technique can prohibit SG formation by smoothing the concaved isotherm and in turn alleviating the undercooling in the platform ends to let the dendrites fill up the undercooled zone before SG nucleation. The simulation results agreed well with the experimental results, indicating that these models could be used to analyze the macrostructural evolution or to optimize process parameters to suppress SG formation. Using these models, the critical withdrawal rate for casting SX turbine blades without SG formation were determined to be around 75 μm·s^(-1) and 100 μm·s^(-1) for HRS and LMC respectively, suggesting that LMC can be used as an efficient technique in fabricating SX turbine blades without any SG defect formation. 展开更多
关键词 热侧面 macrostructural 进化 模拟 HRS LMC 迷路的谷物 TG146.1+5 A
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部