期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
自动测试系统软件的数据处理方法研究
1
作者 苟秀梅 《信息与电脑》 2024年第10期9-11,共3页
为提高自动测试效率与准确度,本文提出了一种创新的数据处理方法。首先,文章深入分析了数据格式,涵盖程控仪表数据接口与数据格式分类;然后,提出了一种数据处理模块分类方法,在此基础上实现了迹线计算、文件取值以及公式编辑等功能;最后... 为提高自动测试效率与准确度,本文提出了一种创新的数据处理方法。首先,文章深入分析了数据格式,涵盖程控仪表数据接口与数据格式分类;然后,提出了一种数据处理模块分类方法,在此基础上实现了迹线计算、文件取值以及公式编辑等功能;最后,将该方法应用于轨道车辆自动测试系统软件中。 展开更多
关键词 自动测试系统软件 数据处理方法 迹线计算
下载PDF
Maximization of the sum of the trace ratio on the Stiefel manifold, II: Computation 被引量:1
2
作者 ZHANG LeiHong LI RenCang 《Science China Mathematics》 SCIE CSCD 2015年第7期1549-1566,共18页
The necessary condition established in Part I of this paper for the global maximizers of the maximization problem max V tr(VTAV)/tr(VTBV)+tr(VTCV)over the Stiefel manifold{V∈Rm×l |VTV=Il}(l〈m),natural... The necessary condition established in Part I of this paper for the global maximizers of the maximization problem max V tr(VTAV)/tr(VTBV)+tr(VTCV)over the Stiefel manifold{V∈Rm×l |VTV=Il}(l〈m),naturally leads to a self-consistent-field(SCF)iteration for computing a maximizer.In this part,we analyze the global and local convergence of the SCF iteration,and show that the necessary condition for the global maximizers is fulfilled at any convergent point of the sequences of approximations generated by the SCF iteration.This is one of the advantages of the SCF iteration over optimization-based methods.Preliminary numerical tests are reported and show that the SCF iteration is very efficient by comparing with some manifold-based optimization methods. 展开更多
关键词 trace ratio Rayleigh quotient Stiefel manifold nonlinear eigenvalue problem optimality condi-tion self-consistent-field iteration EIGENSPACE
原文传递
Intelligent computing budget allocation for on-road tra jectory planning based on candidate curves
3
作者 Xiao-xin FU Yong-heng JIANG +2 位作者 De-xian HUANG Jing-chun WANG Kai-sheng HUANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期553-565,共13页
In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolut... In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution(OODE). The proposed algorithm is named IOODE with ‘I' representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution(DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods. 展开更多
关键词 Intelligent computing budget allocation Trajectory planning On-road planning Intelligent vehicles Ordinal optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部