为改善常规驾驶车辆交通流追尾碰撞交通安全状况,提出智能网联车辆(Connected and Automated Vehicles,CAV)与常规车辆构成的混合交通流车队稳定性优化控制方法。基于全速度差模型,应用集成速度与加速度的多前车反馈构建CAV跟驰模型,考...为改善常规驾驶车辆交通流追尾碰撞交通安全状况,提出智能网联车辆(Connected and Automated Vehicles,CAV)与常规车辆构成的混合交通流车队稳定性优化控制方法。基于全速度差模型,应用集成速度与加速度的多前车反馈构建CAV跟驰模型,考虑CAV混合交通流车辆空间分布的随机性,将各类型局部车队稳定性作为优化目标,以局部车队头车速度扰动为系统输入,以尾车速度扰动为系统输出,应用经典控制理论领域的传递函数法推导局部车队稳定性约束条件;分析关于平衡态速度与CAV反馈系数的车队稳定域,以各类型局部车队能够在任意平衡态速度下均稳定为控制目标,对CAV反馈系数输出进行优化控制;设计高速公路上匝道交通瓶颈数值仿真试验,在不同CAV比例等多种条件下,分析CAV混合交通流优化控制对交通流车辆追尾碰撞风险的影响。研究结果表明:CAV混合交通流优化控制可降低车辆追尾碰撞风险,在碰撞时间阈值小于2s时,100%比例的CAV交通流可将交通流的车辆追尾碰撞风险降低85.81%以上;在碰撞时间阈值大于2s时,追尾碰撞风险可降低48.22%~78.80%。所提优化控制方法可有效降低CAV车队优化控制的复杂性,为大规模CAV背景下的混合交通流优化控制以及车辆追尾碰撞交通安全提升策略提供直接理论参考。展开更多
文摘为改善常规驾驶车辆交通流追尾碰撞交通安全状况,提出智能网联车辆(Connected and Automated Vehicles,CAV)与常规车辆构成的混合交通流车队稳定性优化控制方法。基于全速度差模型,应用集成速度与加速度的多前车反馈构建CAV跟驰模型,考虑CAV混合交通流车辆空间分布的随机性,将各类型局部车队稳定性作为优化目标,以局部车队头车速度扰动为系统输入,以尾车速度扰动为系统输出,应用经典控制理论领域的传递函数法推导局部车队稳定性约束条件;分析关于平衡态速度与CAV反馈系数的车队稳定域,以各类型局部车队能够在任意平衡态速度下均稳定为控制目标,对CAV反馈系数输出进行优化控制;设计高速公路上匝道交通瓶颈数值仿真试验,在不同CAV比例等多种条件下,分析CAV混合交通流优化控制对交通流车辆追尾碰撞风险的影响。研究结果表明:CAV混合交通流优化控制可降低车辆追尾碰撞风险,在碰撞时间阈值小于2s时,100%比例的CAV交通流可将交通流的车辆追尾碰撞风险降低85.81%以上;在碰撞时间阈值大于2s时,追尾碰撞风险可降低48.22%~78.80%。所提优化控制方法可有效降低CAV车队优化控制的复杂性,为大规模CAV背景下的混合交通流优化控制以及车辆追尾碰撞交通安全提升策略提供直接理论参考。