Numerous edge-chasing deadlock detection algonthms were developed lor the cycle detection in distributed systems, but their detections had the n steps speed limitation and n ( n- 1) overhead limitation to detect a c...Numerous edge-chasing deadlock detection algonthms were developed lor the cycle detection in distributed systems, but their detections had the n steps speed limitation and n ( n- 1) overhead limitation to detect a cycle of size n under the one-resource request model. Since fast deadlock detection is critical, this paper proposed a new algorithm to speed up the detection process. In our algorithm, when the running of a transaction node is blocked, the being requested resource nodes reply it with the waiting or being waited message simultaneously, so the blocked node knows both its predecessors and successors, which helps it detecting a cycle of size 2 directly and locally. For the cycle of size n ( n 〉 2), a special probe is produced which has the predecessors information of its originator, so the being detected nodes know their indirect predecessors and direct successors, and can detect the cycle within n - 2 steps. The proposed algorithm is formally proved to be correct by the invariant verification method. Performance evaluation shows that the message overhead of our detection is ( n^2 - n - 2)/2, hence both the detection speed and message cost of the proposed algorithm are better than that of the existing al gorithms.展开更多
Dogs are used for centuries as people helpers. One of possible use is a sport and service. BSM (Belgian Shepherd Malinois) and GS (German shepherd) dogs are most used breeds like service dogs and also most represe...Dogs are used for centuries as people helpers. One of possible use is a sport and service. BSM (Belgian Shepherd Malinois) and GS (German shepherd) dogs are most used breeds like service dogs and also most represented at sports competitions. Our aim was to compare the results of these breeds in the World Cup of International tests of working dogs (in years 2003-2011), which is the peak of competitions. The authors evaluated results of German shepherd dog performance test and Belgian shepherd Malinois performance in disciplines such as tracking, obedience and defense. Belgian Shepherds achieved in all disciplines higher score than German shepherds. It was found out that Belgian shepherd Malinois get significant higher score in all disciplines (tracking, obedience and defense) than German shepherd. However, both of breeds are used successfully as service dogs.展开更多
Noncoherent early-late processing (NELP) code tracking loops are often implemented using digital hardware for digital global positioning system (GPS) receivers. Noncommensurate sampling technology is widely used b...Noncoherent early-late processing (NELP) code tracking loops are often implemented using digital hardware for digital global positioning system (GPS) receivers. Noncommensurate sampling technology is widely used because it is viewed as an effective solution to cope with the drawback of digital effects. However, the relationship between the sampling rate and auto-correlation function (ACF) is not adequately characterized by traditional analysis. The principles for selecting the sampling rate are still not apparent. In order to solve this problem, we first analyzed the effects of different sampling rates on ACF and obtained the analytical form of a discrete auto-correlation function (DACF) for a noncommensurate sampling rate. Based on the result, the relationship between the step variation in DACF and NELP parameters such as sampling rate, integration time, and correlator spacing was determined. The maximum step variation size of DACF was also determined. However, considering the actual situation, additional factors such as code Doppler shift, precorrelation filter, and thermal noise may degrade the step variation of DACE The relationship between the step variation and these factors was analyzed separately. An appropriate sampling rate and appropriate correlator spacing were proposed to achieve the typical accuracy of measurement. The numerical simulation verified the validity of the above theoretical analyses, and finally, the conclusions and design constraints for the digital GPS receiver are summarized.展开更多
This paper addresses the composite nonlinear feedback(CNF) control for a class of singleinput single-output nonlinear systems with input saturation to track a time varying reference target with good transient perfor...This paper addresses the composite nonlinear feedback(CNF) control for a class of singleinput single-output nonlinear systems with input saturation to track a time varying reference target with good transient performance. The CNF control law consists of a tracking control law and a performance compensator. The tracking control law is designed to drive the output of the system to track the time varying reference target rapidly, while the performance compensator is used to reduce the overshoot caused by the tracking control law. The stability of the closed-loop system is established. The design procedure and the improvement of transient performance of the closed-loop system are illustrated with a numerical example and the controlled Van del Pol oscillator.展开更多
In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be...In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be identified in the first place. We investigate the iterative bias estimation process based on the expectation-maximization(EM)algorithm, for cases where sufficiently large numbers of measurements are at hand. With the assistance of extended Kalman filtering and smoothing, we derive two EM estimation processes to estimate the measurement bias which is formulated as a random variable in one state-space model and a constant value in another. More importantly,we theoretically derive the global convergence result of the EM-based measurement bias estimation and reveal the link between the two proposed EM estimation processes in the respective state-space models. It is found that the bias estimate in the second state-space model is more accurate and of less complexity. Furthermore, the EM-based iterative estimation converges faster in the second state-space model than in the first one. As a byproduct, the target trajectory can be simultaneously estimated with the measurement bias, after processing a batch of measurements.These results are confirmed by our simulations.展开更多
文摘Numerous edge-chasing deadlock detection algonthms were developed lor the cycle detection in distributed systems, but their detections had the n steps speed limitation and n ( n- 1) overhead limitation to detect a cycle of size n under the one-resource request model. Since fast deadlock detection is critical, this paper proposed a new algorithm to speed up the detection process. In our algorithm, when the running of a transaction node is blocked, the being requested resource nodes reply it with the waiting or being waited message simultaneously, so the blocked node knows both its predecessors and successors, which helps it detecting a cycle of size 2 directly and locally. For the cycle of size n ( n 〉 2), a special probe is produced which has the predecessors information of its originator, so the being detected nodes know their indirect predecessors and direct successors, and can detect the cycle within n - 2 steps. The proposed algorithm is formally proved to be correct by the invariant verification method. Performance evaluation shows that the message overhead of our detection is ( n^2 - n - 2)/2, hence both the detection speed and message cost of the proposed algorithm are better than that of the existing al gorithms.
文摘Dogs are used for centuries as people helpers. One of possible use is a sport and service. BSM (Belgian Shepherd Malinois) and GS (German shepherd) dogs are most used breeds like service dogs and also most represented at sports competitions. Our aim was to compare the results of these breeds in the World Cup of International tests of working dogs (in years 2003-2011), which is the peak of competitions. The authors evaluated results of German shepherd dog performance test and Belgian shepherd Malinois performance in disciplines such as tracking, obedience and defense. Belgian Shepherds achieved in all disciplines higher score than German shepherds. It was found out that Belgian shepherd Malinois get significant higher score in all disciplines (tracking, obedience and defense) than German shepherd. However, both of breeds are used successfully as service dogs.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0501301)the Key Laboratory for Fault Diagnosis and Maintenance of Spacecraft in Orbit(Grant No.SDML_OF2015006)
文摘Noncoherent early-late processing (NELP) code tracking loops are often implemented using digital hardware for digital global positioning system (GPS) receivers. Noncommensurate sampling technology is widely used because it is viewed as an effective solution to cope with the drawback of digital effects. However, the relationship between the sampling rate and auto-correlation function (ACF) is not adequately characterized by traditional analysis. The principles for selecting the sampling rate are still not apparent. In order to solve this problem, we first analyzed the effects of different sampling rates on ACF and obtained the analytical form of a discrete auto-correlation function (DACF) for a noncommensurate sampling rate. Based on the result, the relationship between the step variation in DACF and NELP parameters such as sampling rate, integration time, and correlator spacing was determined. The maximum step variation size of DACF was also determined. However, considering the actual situation, additional factors such as code Doppler shift, precorrelation filter, and thermal noise may degrade the step variation of DACE The relationship between the step variation and these factors was analyzed separately. An appropriate sampling rate and appropriate correlator spacing were proposed to achieve the typical accuracy of measurement. The numerical simulation verified the validity of the above theoretical analyses, and finally, the conclusions and design constraints for the digital GPS receiver are summarized.
基金supported by the National Nature Science Foundation of China under Grant Nos.61374035 and 61733017
文摘This paper addresses the composite nonlinear feedback(CNF) control for a class of singleinput single-output nonlinear systems with input saturation to track a time varying reference target with good transient performance. The CNF control law consists of a tracking control law and a performance compensator. The tracking control law is designed to drive the output of the system to track the time varying reference target rapidly, while the performance compensator is used to reduce the overshoot caused by the tracking control law. The stability of the closed-loop system is established. The design procedure and the improvement of transient performance of the closed-loop system are illustrated with a numerical example and the controlled Van del Pol oscillator.
基金supported by the National Natural Science Foundation of China(No.61601254)the KC Wong Magna Fund of Ningbo University,China
文摘In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be identified in the first place. We investigate the iterative bias estimation process based on the expectation-maximization(EM)algorithm, for cases where sufficiently large numbers of measurements are at hand. With the assistance of extended Kalman filtering and smoothing, we derive two EM estimation processes to estimate the measurement bias which is formulated as a random variable in one state-space model and a constant value in another. More importantly,we theoretically derive the global convergence result of the EM-based measurement bias estimation and reveal the link between the two proposed EM estimation processes in the respective state-space models. It is found that the bias estimate in the second state-space model is more accurate and of less complexity. Furthermore, the EM-based iterative estimation converges faster in the second state-space model than in the first one. As a byproduct, the target trajectory can be simultaneously estimated with the measurement bias, after processing a batch of measurements.These results are confirmed by our simulations.