TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
Pre-compression and heat treatment were performed on an extruded AZ31 Mg alloy,and their effects on subsequent deformation behavior were investigated.The results show that at low temperature annealing(170 ℃ for 4 h),...Pre-compression and heat treatment were performed on an extruded AZ31 Mg alloy,and their effects on subsequent deformation behavior were investigated.The results show that at low temperature annealing(170 ℃ for 4 h),the extruded samples with and without annealing exhibit a nearly equivalent yield stress(~148 MPa) because their microstructures are nearly unchanged.However,under the same annealing condition,the yield stress of sample with pre-twinning and subsequent annealing(~225 MPa) is higher than that of the pre-twinned one(~200 MPa).The former sample presents a hardening effect because the solute atoms segregated on twin boundaries lead to a strengthening effect.The pre-twinned sample annealed at 400 ℃ for 1 h shows a higher ultimate elongation(~28%) than the pre-twinned one(~15%),but its yield stress(~125 MPa) is much lower than that of the pre-twinned one(~200 MPa).展开更多
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ...In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.展开更多
The electrical properties of annealed undoped n type InP are studied by temperature dependent Hall effect (TDH) and current voltage ( I V ) measurements for semiconducting and semi insulating samples,respectivel...The electrical properties of annealed undoped n type InP are studied by temperature dependent Hall effect (TDH) and current voltage ( I V ) measurements for semiconducting and semi insulating samples,respectively.Defect band conduction in annealed semiconducting InP can be observed from TDH measurement,which is similar to those of as grown unintentionally doped InP with low carrier concentration and moderate compensation.The I V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown.Such a result is different from that of as grown Fe doped SI InP which has a nonlinear region in I V curve explained by the theory of space charge limited current.展开更多
A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is const...A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.展开更多
The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal st...The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.展开更多
A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-...A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-annealing conditions on microstructures,in terms of crystallisation,pores formation and grain growth,were investigated using SEM/EDX and XRD. Corrosion behaviours of these coatings before and after various treatments were evaluated with anodic polarisation in 0.5 mol/L H2SO4 solution.The results show that the furnace-annealing produces either a mixture of nanocrystallined Ni and amorphous phases or precipitated Ni3P phase distributed in nanocrystallined Ni-based matrix,depending on annealing temperatures,whilst the laser treatment under the operating conditions only produces nanocrystallined Ni-based matrix with Ni3P precipitates.Corrosion performance of the coatings treated by both the laser and the furnace-annealing is dependent on the annealing temperature and laser operating conditions.Corrosion mechanisms of various treated-coatings were discussed in the consideration of phase constitutes and proportion,grain sizes of both Ni and Ni3P phases,pores formation and residual stresses.展开更多
On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology wa...On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.展开更多
Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dens...Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dense coating could be fabricated at a ratio of 35%(weight fraction)Al-FeCoNiCrAl after 4 h milling.The results showed that the thickness of the composite coatings increased first and then decreased with the increase of milling time. And the hardness of coating increased with the increase of milling time. The phase changed during the annealing process. Part of the initial body-centered cubic(BCC)phase of the composite coatings changed into the L12 phase,(Ni,Co)3Al4 and σ phase after annealing above 550 ℃. Ordered BCC was found in the coatings after annealing above 750 ℃. Only BCC and ordered BCC appeared in coatings after annealing above 1 050 ℃. The hardness of the coatings after annealing at 550 ℃ and 750 ℃ was higher than before because of spinodal decomposition and high hardness σ phase. The hardness of the coatings after annealing at 1 050 ℃ decreased because residual stress released.展开更多
Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are ...Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.展开更多
The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and elect...The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.展开更多
Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show tha...Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).展开更多
The changes in hardness, microhardness, electrical conductivity and microstructure of the sintered Cu-4%Au (mole fraction) alloy during thermomechanical treatment were studied. Following the primary strain hardening...The changes in hardness, microhardness, electrical conductivity and microstructure of the sintered Cu-4%Au (mole fraction) alloy during thermomechanical treatment were studied. Following the primary strain hardening, an annealing of rolled alloy in the temperature range of 60-350 ℃ provided additional strengthening due to the anneal hardening effect. An increase in properties took place in two stages, and the best combination of properties was achieved in the alloy pre-rolled with 40% reduction after annealing at 260 ℃. Significant microstructural changes followed the changes of properties in the course of the thermomechanical treatment.展开更多
With no annealing treatment, cathodic polarization trends in 5083F A1 alloy revealed concentration polarization and activation polarization. However, the annealed specimens have lower current densities at corrosion pr...With no annealing treatment, cathodic polarization trends in 5083F A1 alloy revealed concentration polarization and activation polarization. However, the annealed specimens have lower current densities at corrosion protection potential compared to the non-annealed specimen. The results of SSRTs conducted in seawater at the applied potential range of-l.8 V to -0.5 V indicated that the maximum tensile strength, elongation, and time-to-fracture had high values at applied potentials of -0.7 to -1.4 V. The maximum tensile strength, elongation, and time-to-f?acture decreased when the potential values were beyond this range in either anodic or cathodic direction. In general, the increased shear lip caused by annealing treatment indicates elongation. Time-to-fracture would likely increase with elongation. Potentials between -0.5 V to -0.6 V were found to be in the region of stress corrosion cracking. The corrosion protection zone was determined to be -0.7 V to -J,4 V because these potential ranges produced good mechanical properties. Potential less than -1.4 V produced a fractured surface with a mixture of dimples (ductile fractures) and a quasi-cleavage pattern resulting from the effects of hydrogen gas.展开更多
The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA)...The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.展开更多
The Jamaica Bay ecosystem is a dichotomy. It encompasses more than 12,000 acres of coastal estuarine marshes and an ecological diversity rivaling any coastal environment in the world. It is considerably altered, and i...The Jamaica Bay ecosystem is a dichotomy. It encompasses more than 12,000 acres of coastal estuarine marshes and an ecological diversity rivaling any coastal environment in the world. It is considerably altered, and is affected by a variety of ecological insults directly related to the fact that more than 14 million people live in its vicinity. Environmental protection institutions responded to the challenge of protecting the bay, surrounding wetlands and recreational benefits by addressing the increasing load of contaminants into the ecosystem. Billions of dollars have been spent during the past five decades on restoration attempts, including upgrading wastewater treatment plantsand the closure of three major sanitary landfills. Even with the curtailment of untreated wastewater release and ending periodic dredging and filling programs, all activities that are necessary processes in maintaining an urban harbor, the Jamaica Bay ecosystem has reached a point where many believe it to be unrecoverable, requiring massive infusions of restoration dollars. This categorization has been perpetuated based on questionable data (the "myths") that, when investigated in rigorous scientific detail, prove to be unsubstantiated. In this paper, the origin of these myths and the scientific investigation that dispel them are discussed.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
基金Project(XDJK2013C106)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51201140)supported by the National Natural Science Foundation of China
文摘Pre-compression and heat treatment were performed on an extruded AZ31 Mg alloy,and their effects on subsequent deformation behavior were investigated.The results show that at low temperature annealing(170 ℃ for 4 h),the extruded samples with and without annealing exhibit a nearly equivalent yield stress(~148 MPa) because their microstructures are nearly unchanged.However,under the same annealing condition,the yield stress of sample with pre-twinning and subsequent annealing(~225 MPa) is higher than that of the pre-twinned one(~200 MPa).The former sample presents a hardening effect because the solute atoms segregated on twin boundaries lead to a strengthening effect.The pre-twinned sample annealed at 400 ℃ for 1 h shows a higher ultimate elongation(~28%) than the pre-twinned one(~15%),but its yield stress(~125 MPa) is much lower than that of the pre-twinned one(~200 MPa).
基金Projects(51161015,51371094) supported by the National Natural Science Foundation of China
文摘In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.
文摘The electrical properties of annealed undoped n type InP are studied by temperature dependent Hall effect (TDH) and current voltage ( I V ) measurements for semiconducting and semi insulating samples,respectively.Defect band conduction in annealed semiconducting InP can be observed from TDH measurement,which is similar to those of as grown unintentionally doped InP with low carrier concentration and moderate compensation.The I V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown.Such a result is different from that of as grown Fe doped SI InP which has a nonlinear region in I V curve explained by the theory of space charge limited current.
基金The National Natural Science Foundation of China (60272045) the Key Project of Ministry of Education of China.
文摘A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.
基金Project(51201052)supported by the National Natural Science Foundation of ChinaProject(2012RFQXG107)supported by the Innovative Talent Fund of Harbin City+1 种基金Project(E201056)supported by Natural Science Foundation of Heilongjiang Province of ChinaProject(1252G022)supported by the Program for Youth Academic Backbone in Heilongjiang Provincial University,China
文摘The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.
基金Project(Y2006F40) supported by the Natural Science Foundation of Shandong Province, ChinaProject(N00003) supported by UK Northwest Science Council through Northwest Laser Engineering Consortium (NWLEC)
文摘A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-annealing conditions on microstructures,in terms of crystallisation,pores formation and grain growth,were investigated using SEM/EDX and XRD. Corrosion behaviours of these coatings before and after various treatments were evaluated with anodic polarisation in 0.5 mol/L H2SO4 solution.The results show that the furnace-annealing produces either a mixture of nanocrystallined Ni and amorphous phases or precipitated Ni3P phase distributed in nanocrystallined Ni-based matrix,depending on annealing temperatures,whilst the laser treatment under the operating conditions only produces nanocrystallined Ni-based matrix with Ni3P precipitates.Corrosion performance of the coatings treated by both the laser and the furnace-annealing is dependent on the annealing temperature and laser operating conditions.Corrosion mechanisms of various treated-coatings were discussed in the consideration of phase constitutes and proportion,grain sizes of both Ni and Ni3P phases,pores formation and residual stresses.
文摘On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.
文摘Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dense coating could be fabricated at a ratio of 35%(weight fraction)Al-FeCoNiCrAl after 4 h milling.The results showed that the thickness of the composite coatings increased first and then decreased with the increase of milling time. And the hardness of coating increased with the increase of milling time. The phase changed during the annealing process. Part of the initial body-centered cubic(BCC)phase of the composite coatings changed into the L12 phase,(Ni,Co)3Al4 and σ phase after annealing above 550 ℃. Ordered BCC was found in the coatings after annealing above 750 ℃. Only BCC and ordered BCC appeared in coatings after annealing above 1 050 ℃. The hardness of the coatings after annealing at 550 ℃ and 750 ℃ was higher than before because of spinodal decomposition and high hardness σ phase. The hardness of the coatings after annealing at 1 050 ℃ decreased because residual stress released.
基金UndertheauspicesoftheNationalNaturalScienceFoundationof China (No.4033100830270225)
文摘Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.
基金Projects(51371094,51161015)supported by the National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.
基金Project(2020A1515110869)supported by Guangdong Basic and Applied Basic Research Foundation,ChinaProject(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,China+3 种基金Project(51775351)supported by the National Natural Science Foundation of ChinaProject(2019011)supported by the NTUT-SZU Joint Research Program,ChinaProject(2019040)supported by the Natural Science Foundation of SZU,ChinaProject(ASTRA6-6)supported by the European Regional Development Fund,European Union。
文摘Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).
基金Project(TR34003)supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia
文摘The changes in hardness, microhardness, electrical conductivity and microstructure of the sintered Cu-4%Au (mole fraction) alloy during thermomechanical treatment were studied. Following the primary strain hardening, an annealing of rolled alloy in the temperature range of 60-350 ℃ provided additional strengthening due to the anneal hardening effect. An increase in properties took place in two stages, and the best combination of properties was achieved in the alloy pre-rolled with 40% reduction after annealing at 260 ℃. Significant microstructural changes followed the changes of properties in the course of the thermomechanical treatment.
文摘With no annealing treatment, cathodic polarization trends in 5083F A1 alloy revealed concentration polarization and activation polarization. However, the annealed specimens have lower current densities at corrosion protection potential compared to the non-annealed specimen. The results of SSRTs conducted in seawater at the applied potential range of-l.8 V to -0.5 V indicated that the maximum tensile strength, elongation, and time-to-fracture had high values at applied potentials of -0.7 to -1.4 V. The maximum tensile strength, elongation, and time-to-f?acture decreased when the potential values were beyond this range in either anodic or cathodic direction. In general, the increased shear lip caused by annealing treatment indicates elongation. Time-to-fracture would likely increase with elongation. Potentials between -0.5 V to -0.6 V were found to be in the region of stress corrosion cracking. The corrosion protection zone was determined to be -0.7 V to -J,4 V because these potential ranges produced good mechanical properties. Potential less than -1.4 V produced a fractured surface with a mixture of dimples (ductile fractures) and a quasi-cleavage pattern resulting from the effects of hydrogen gas.
基金Project(2007430028) supported by the Science and Technique Foundation of Henan Educational Committee, China
文摘The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.
文摘The Jamaica Bay ecosystem is a dichotomy. It encompasses more than 12,000 acres of coastal estuarine marshes and an ecological diversity rivaling any coastal environment in the world. It is considerably altered, and is affected by a variety of ecological insults directly related to the fact that more than 14 million people live in its vicinity. Environmental protection institutions responded to the challenge of protecting the bay, surrounding wetlands and recreational benefits by addressing the increasing load of contaminants into the ecosystem. Billions of dollars have been spent during the past five decades on restoration attempts, including upgrading wastewater treatment plantsand the closure of three major sanitary landfills. Even with the curtailment of untreated wastewater release and ending periodic dredging and filling programs, all activities that are necessary processes in maintaining an urban harbor, the Jamaica Bay ecosystem has reached a point where many believe it to be unrecoverable, requiring massive infusions of restoration dollars. This categorization has been perpetuated based on questionable data (the "myths") that, when investigated in rigorous scientific detail, prove to be unsubstantiated. In this paper, the origin of these myths and the scientific investigation that dispel them are discussed.