期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于TFER及退化趋势相似性分析的轴承剩余使用寿命预测
1
作者
刘强强
谷艳玲
张品杨
《机电工程》
CAS
北大核心
2024年第5期853-861,共9页
为了解决传统退化指标对轴承退化起始点的敏感性差,以及退化指标趋势偏移导致无法准确预测风力机轴承剩余使用寿命(RUL)的问题,提出了一种基于Teager能量算子-故障能量比(TFER)与退化趋势(DT)相似性检测相结合的双指数轴承RUL预测方法...
为了解决传统退化指标对轴承退化起始点的敏感性差,以及退化指标趋势偏移导致无法准确预测风力机轴承剩余使用寿命(RUL)的问题,提出了一种基于Teager能量算子-故障能量比(TFER)与退化趋势(DT)相似性检测相结合的双指数轴承RUL预测方法。首先,通过计算原始信号的TFER值,根据4σ原则确定轴承退化起始点,提取了TFER值趋势特征作为退化指标;然后,采用历史TFER值拟合双指数退化模型,通过分析最新TFER值与拟合曲线的相似性,选取了最佳DT段;最后,通过外推相似性最佳的DT段至失效阈值,进行了风力机轴承RUL预测。实验结果表明:该预测方法对退化起始时间点的检测精度达到98%,与原始指数模型、长短期记忆神经网络(LSTM)以及支持向量回归(SVR)相比,该方法在轴承RUL预测精度上分别提高了10.04%、6.29%、5.22%。该方法不仅提升了风力机轴承的预测性维护精度,还对降低运营成本和提高维护效率提供了有力支撑。
展开更多
关键词
风力机轴承
剩余使用寿命
双指数预测方法
TEAGER能量算子
故障能量比
退化趋势相似性检测
相似性
分析
下载PDF
职称材料
题名
基于TFER及退化趋势相似性分析的轴承剩余使用寿命预测
1
作者
刘强强
谷艳玲
张品杨
机构
沈阳工业大学机械工程学院
出处
《机电工程》
CAS
北大核心
2024年第5期853-861,共9页
基金
国家自然科学青年科学基金资助项目(52305066)。
文摘
为了解决传统退化指标对轴承退化起始点的敏感性差,以及退化指标趋势偏移导致无法准确预测风力机轴承剩余使用寿命(RUL)的问题,提出了一种基于Teager能量算子-故障能量比(TFER)与退化趋势(DT)相似性检测相结合的双指数轴承RUL预测方法。首先,通过计算原始信号的TFER值,根据4σ原则确定轴承退化起始点,提取了TFER值趋势特征作为退化指标;然后,采用历史TFER值拟合双指数退化模型,通过分析最新TFER值与拟合曲线的相似性,选取了最佳DT段;最后,通过外推相似性最佳的DT段至失效阈值,进行了风力机轴承RUL预测。实验结果表明:该预测方法对退化起始时间点的检测精度达到98%,与原始指数模型、长短期记忆神经网络(LSTM)以及支持向量回归(SVR)相比,该方法在轴承RUL预测精度上分别提高了10.04%、6.29%、5.22%。该方法不仅提升了风力机轴承的预测性维护精度,还对降低运营成本和提高维护效率提供了有力支撑。
关键词
风力机轴承
剩余使用寿命
双指数预测方法
TEAGER能量算子
故障能量比
退化趋势相似性检测
相似性
分析
Keywords
wind turbine bearing
remaining using life(RUL)
bi-exponential predicting method
Teager energy operator
failure-to-energy ratio(FER)
similarity analysis
degradation trend(DT)similarity detection
分类号
TH133.3 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于TFER及退化趋势相似性分析的轴承剩余使用寿命预测
刘强强
谷艳玲
张品杨
《机电工程》
CAS
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部