The authors consider the existence and regularity of the oblique derivative problem:where P is a second order elliptic differential operator on Rn,Ωis a bounded domain in Rn and is a unit vector field on the boundary...The authors consider the existence and regularity of the oblique derivative problem:where P is a second order elliptic differential operator on Rn,Ωis a bounded domain in Rn and is a unit vector field on the boundary of Ω(which may be tangential to the boundary).All above are assumed with limited smoothness. The authors show that solution u has an elliptic gain from f in Holder spaces(Theorem 1.1). The authors obtain LP regualrity of solution in Theorem 1.3, which generalizes the results in [7] to the limited smooth case. Some of the application nonlinear problems are also discussed.展开更多
This is a continuation of the previous paper [6]. The authors prove Holder and Lp regulaxity of operators collstructed from the oblique derivaive problem in [6] by establishing estimates of pseudodifferential operator...This is a continuation of the previous paper [6]. The authors prove Holder and Lp regulaxity of operators collstructed from the oblique derivaive problem in [6] by establishing estimates of pseudodifferential operators with parameters.展开更多
Consider the initial boundary value problem of the strong degenerate parabolic equation ?_(xx)u + u?_yu-?_tu = f(x, y, t, u),(x, y, t) ∈ Q_T = Ω×(0, T)with a homogeneous boundary condition. By introducing a new...Consider the initial boundary value problem of the strong degenerate parabolic equation ?_(xx)u + u?_yu-?_tu = f(x, y, t, u),(x, y, t) ∈ Q_T = Ω×(0, T)with a homogeneous boundary condition. By introducing a new kind of entropy solution, according to Oleinik rules, the partial boundary condition is given to assure the well-posedness of the problem. By the parabolic regularization method, the uniform estimate of the gradient is obtained, and by using Kolmogoroff 's theorem, the solvability of the equation is obtained in BV(Q_T) sense. The stability of the solutions is obtained by Kruzkov's double variables method.展开更多
The authors discuss the W1,p-solutions and the interior regularity of weak solutions for the Keldys-Fichera boundary value problem using the acute angle principle,the reversed Hlder inequality and the generalized poin...The authors discuss the W1,p-solutions and the interior regularity of weak solutions for the Keldys-Fichera boundary value problem using the acute angle principle,the reversed Hlder inequality and the generalized poincar'e inequalities.展开更多
文摘The authors consider the existence and regularity of the oblique derivative problem:where P is a second order elliptic differential operator on Rn,Ωis a bounded domain in Rn and is a unit vector field on the boundary of Ω(which may be tangential to the boundary).All above are assumed with limited smoothness. The authors show that solution u has an elliptic gain from f in Holder spaces(Theorem 1.1). The authors obtain LP regualrity of solution in Theorem 1.3, which generalizes the results in [7] to the limited smooth case. Some of the application nonlinear problems are also discussed.
文摘This is a continuation of the previous paper [6]. The authors prove Holder and Lp regulaxity of operators collstructed from the oblique derivaive problem in [6] by establishing estimates of pseudodifferential operators with parameters.
基金supported by the National Natural Science Foundation of China(No.11371297)the Science Foundation of Xiamen University of Technology(No.XYK201448)
文摘Consider the initial boundary value problem of the strong degenerate parabolic equation ?_(xx)u + u?_yu-?_tu = f(x, y, t, u),(x, y, t) ∈ Q_T = Ω×(0, T)with a homogeneous boundary condition. By introducing a new kind of entropy solution, according to Oleinik rules, the partial boundary condition is given to assure the well-posedness of the problem. By the parabolic regularization method, the uniform estimate of the gradient is obtained, and by using Kolmogoroff 's theorem, the solvability of the equation is obtained in BV(Q_T) sense. The stability of the solutions is obtained by Kruzkov's double variables method.
基金supported by the National Natural Science Foundation of China(No.10971148)
文摘The authors discuss the W1,p-solutions and the interior regularity of weak solutions for the Keldys-Fichera boundary value problem using the acute angle principle,the reversed Hlder inequality and the generalized poincar'e inequalities.