广义最小二乘估计(Generalized least squares estimation,GLSE)是最佳线性无偏估计,却有计算复杂高和依赖未知信息的局限性,使得普通最小二乘估计(Ordinary least squares estimation,OLSE)经常成为应用的无奈之选。本文探讨该现象背...广义最小二乘估计(Generalized least squares estimation,GLSE)是最佳线性无偏估计,却有计算复杂高和依赖未知信息的局限性,使得普通最小二乘估计(Ordinary least squares estimation,OLSE)经常成为应用的无奈之选。本文探讨该现象背后的三个循序渐进的理论问题:第一,GLSE的退化问题,给出GLSE完全退化为OLSE的充要条件;第二,退化的分类问题,依据设计矩阵和误差协方差阵的结构把退化现象分为三类,并给出典型的退化特例;第三,不完全退化问题,研讨导致效率退化的因素,刻画效率曲线和效率曲面,最后给出效率不低于95%的退化边界。效率退化和边界分析的潜在应用价值主要包括两方面:第一,为进一步优化试验方案提供效率视角和反馈信息;第二,为设计更简洁更可靠的算法提供理论依据。展开更多
针对转辙机退化阶段难以划分的问题,提出一种基于多维特征融合的道岔转辙机退化状态识别方法。首先,提取了S700K转辙机退化功率数据的时域、频域、时频域多域特征;其次,通过核主成分分析(Kernel Principal Components Analysis,KPCA)进...针对转辙机退化阶段难以划分的问题,提出一种基于多维特征融合的道岔转辙机退化状态识别方法。首先,提取了S700K转辙机退化功率数据的时域、频域、时频域多域特征;其次,通过核主成分分析(Kernel Principal Components Analysis,KPCA)进行特征融合,获得表征道岔转辙机运行状态的特征向量,构建转辙机退化性能指标;再次,采用K-medoids聚类算法对道岔转辙机性能退化状态进行阶段划分,识别不同的退化状态;最后,选用轮廓系数、分类系数、平均模糊熵对聚类效果进行综合评价,并与模糊C均值聚类(Fuzzy C-Means Clustering,FCM)和古斯塔夫森-凯塞尔(Gustafson Kessel,GK)聚类算法进行比较。研究结果表明,融合特征聚类后的综合评价指标高于单一特征,更能够体现道岔转辙机退化过程中的细节,K-medoids聚类效果明显,模型的准确率达到96.3%,能够对道岔转辙机性能退化阶段进行准确的划分,为铁路现场道岔智能运维提供理论支持。展开更多
文摘广义最小二乘估计(Generalized least squares estimation,GLSE)是最佳线性无偏估计,却有计算复杂高和依赖未知信息的局限性,使得普通最小二乘估计(Ordinary least squares estimation,OLSE)经常成为应用的无奈之选。本文探讨该现象背后的三个循序渐进的理论问题:第一,GLSE的退化问题,给出GLSE完全退化为OLSE的充要条件;第二,退化的分类问题,依据设计矩阵和误差协方差阵的结构把退化现象分为三类,并给出典型的退化特例;第三,不完全退化问题,研讨导致效率退化的因素,刻画效率曲线和效率曲面,最后给出效率不低于95%的退化边界。效率退化和边界分析的潜在应用价值主要包括两方面:第一,为进一步优化试验方案提供效率视角和反馈信息;第二,为设计更简洁更可靠的算法提供理论依据。