It is an important control process to operate motion of an submergence rescue vehicle(SRV). Seeing that the motion of the submergence rescue vehicle is special, it is necessary to employ non-linear predictive control ...It is an important control process to operate motion of an submergence rescue vehicle(SRV). Seeing that the motion of the submergence rescue vehicle is special, it is necessary to employ non-linear predictive control system. For this reason, continuous dynamic performance of the system, the logical components and the operative restraints are expressed as the non-linear equations of state with the inequality restraints, and the model principle of hybrid system is introduced. The conclusion shows that it comes true to exactly control position and attitude of the SRV by means of non-linear model predictive control. The test in a model basin has also proved that the above methods are efficient.展开更多
基金Supported by the National Defence Science and Industry Committee Foundation under Grant No.40104050101.
文摘It is an important control process to operate motion of an submergence rescue vehicle(SRV). Seeing that the motion of the submergence rescue vehicle is special, it is necessary to employ non-linear predictive control system. For this reason, continuous dynamic performance of the system, the logical components and the operative restraints are expressed as the non-linear equations of state with the inequality restraints, and the model principle of hybrid system is introduced. The conclusion shows that it comes true to exactly control position and attitude of the SRV by means of non-linear model predictive control. The test in a model basin has also proved that the above methods are efficient.