Over the last decades and centuries,European mountain landscapes have experienced substantial transformations.Natural and anthropogenic LULC changes(land use and land cover changes), especially agro-pastoral activitie...Over the last decades and centuries,European mountain landscapes have experienced substantial transformations.Natural and anthropogenic LULC changes(land use and land cover changes), especially agro-pastoral activities,have directly influenced the spatial organization and composition of European mountain landscapes.For the past sixty years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population.Stakeholders, to better anticipate future changes,need spatially and temporally explicit models to identify areas at risk of land change and possible abandonment.This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains,based on historical LULC trends and a range of future socio-economic drivers.The proposed methodologyconsiders local specificities of the Pyrenean valleys,sub-regional climate and topographical properties,and regional economic policies.Results indicate that some regions are projected to face strong abandonment, regardless of the scenario conditions.Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive(agricultural and/or pastoral) production and profitability.The combination of the results for the four scenarios allows assessments of where encroachment(e.g.colonization by shrublands) and reforestation are the most probable.This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions.展开更多
Aiming at alleviating the serious soil erosion, the Chinese government initiated the Sloping Land Conversion Program (SLCP) in 1999. Now; after 8 years of project implementation, the ecological recovery effects of t...Aiming at alleviating the serious soil erosion, the Chinese government initiated the Sloping Land Conversion Program (SLCP) in 1999. Now; after 8 years of project implementation, the ecological recovery effects of the SLCP have become the hot issue of academic circle. This paper; raking the loess hill and gully area of northern Shaanxi as an example, presents a methodology for assessing the vegetation restoration effect of SLCP with normalized difference vegetation index (NDVI). The key components include calculation of the Growing Season NDVI (GSNDVI), and estimation of the NVDI change induced by climate and SLCP, respectively. Based on the method, the NDVI change between 2000 and 2006 was obtained using the GSNDVI that excluded the noise from snow and ice. After the part of total NDVI change caused to: climate variation was estimated using empiric formulae, we obtained the part induced by human factors, i.e. the SLCP The human induced part of ND VI change was considered as an approximation indicating the effect of the SLCP on the vegetation. Finally, we analyzed the ND VI change characters of the whole study area, different slope lands and different land use types by spatial statistics method. Results show that the vegetation condition is significantly improved by the SLCP, particularly land types that directly involved in the SLCP, such as steeply slope farmlands, degraded grasslands, etc.展开更多
Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils a...Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.展开更多
基金supported by the MODE RESPYR project(ANR 2010 JCJC 1804-01)founded by the French National Science Agency(ANR)
文摘Over the last decades and centuries,European mountain landscapes have experienced substantial transformations.Natural and anthropogenic LULC changes(land use and land cover changes), especially agro-pastoral activities,have directly influenced the spatial organization and composition of European mountain landscapes.For the past sixty years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population.Stakeholders, to better anticipate future changes,need spatially and temporally explicit models to identify areas at risk of land change and possible abandonment.This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains,based on historical LULC trends and a range of future socio-economic drivers.The proposed methodologyconsiders local specificities of the Pyrenean valleys,sub-regional climate and topographical properties,and regional economic policies.Results indicate that some regions are projected to face strong abandonment, regardless of the scenario conditions.Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive(agricultural and/or pastoral) production and profitability.The combination of the results for the four scenarios allows assessments of where encroachment(e.g.colonization by shrublands) and reforestation are the most probable.This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions.
基金supported by National Natural Science Foundation of China (Grant No.40671007) Major Projects of Knowledge In-novation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-421)
文摘Aiming at alleviating the serious soil erosion, the Chinese government initiated the Sloping Land Conversion Program (SLCP) in 1999. Now; after 8 years of project implementation, the ecological recovery effects of the SLCP have become the hot issue of academic circle. This paper; raking the loess hill and gully area of northern Shaanxi as an example, presents a methodology for assessing the vegetation restoration effect of SLCP with normalized difference vegetation index (NDVI). The key components include calculation of the Growing Season NDVI (GSNDVI), and estimation of the NVDI change induced by climate and SLCP, respectively. Based on the method, the NDVI change between 2000 and 2006 was obtained using the GSNDVI that excluded the noise from snow and ice. After the part of total NDVI change caused to: climate variation was estimated using empiric formulae, we obtained the part induced by human factors, i.e. the SLCP The human induced part of ND VI change was considered as an approximation indicating the effect of the SLCP on the vegetation. Finally, we analyzed the ND VI change characters of the whole study area, different slope lands and different land use types by spatial statistics method. Results show that the vegetation condition is significantly improved by the SLCP, particularly land types that directly involved in the SLCP, such as steeply slope farmlands, degraded grasslands, etc.
基金supported jointly by the National Natural Science Foundation of China(4132501041571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.