A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhanc...A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.展开更多
Multirate multivariable predictive control system with the sampling mechanism that adjusts the plant inputs only once but detects the plant outputs several times during a period is examined. The IMC structure of the s...Multirate multivariable predictive control system with the sampling mechanism that adjusts the plant inputs only once but detects the plant outputs several times during a period is examined. The IMC structure of the system is derived, and its robust stability and zero steady state error characteristics are analyzed. A new control algorithm is developed by adding the variation of the outputs to the index performance. The simulation results show that the method is effective and has zeros steady-state error.展开更多
基金Supported by the National Natrural Science Foundation of China(No.69635010).
文摘A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.
文摘Multirate multivariable predictive control system with the sampling mechanism that adjusts the plant inputs only once but detects the plant outputs several times during a period is examined. The IMC structure of the system is derived, and its robust stability and zero steady state error characteristics are analyzed. A new control algorithm is developed by adding the variation of the outputs to the index performance. The simulation results show that the method is effective and has zeros steady-state error.