An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the...An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.展开更多
By introducing a deadwzone scheme, a new neural network based adaptive iterative learning control (ILC) (NN-AILC) scheme is presented for nonlinear discrete-time systems, where the NN weights are time-varying. The...By introducing a deadwzone scheme, a new neural network based adaptive iterative learning control (ILC) (NN-AILC) scheme is presented for nonlinear discrete-time systems, where the NN weights are time-varying. The most distinct contribution of the proposed NN-AILC is the relaxation of the identical conditions of initial state and reference trajectory, which are common requirements in traditional ILC problems. Convergence analysis indicates that the tracking error converges to a bounded ball, whose size is determined by the dead-zone nonlinearity. Computer simulations verify the theoretical results.展开更多
文摘An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.
基金supported by General Program (60774022)State Key Program (60834001) of National Natural Science Foundation of ChinaDoctoral Foundation of Qingdao University of Science & Technology (0022324)
文摘By introducing a deadwzone scheme, a new neural network based adaptive iterative learning control (ILC) (NN-AILC) scheme is presented for nonlinear discrete-time systems, where the NN weights are time-varying. The most distinct contribution of the proposed NN-AILC is the relaxation of the identical conditions of initial state and reference trajectory, which are common requirements in traditional ILC problems. Convergence analysis indicates that the tracking error converges to a bounded ball, whose size is determined by the dead-zone nonlinearity. Computer simulations verify the theoretical results.