Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome ...Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.展开更多
Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a ...Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.展开更多
Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the fin...Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.展开更多
基金Supported by National Natural Science Foundation of China( No. 50378061).
文摘Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z245)the Program for Changjiang Scholars and Innovative Research Team in University ( No. IRT0423)the Fund for Foreign Scholars in University Research and Teaching Programs (No. B07018)
文摘Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB845302)the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant No.11472290)
文摘Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.