The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive...The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive and active components will be developed in this paper in order to control the shaft dynamical amplitude. Different models of hydrodynamic bearings behavior are described. The Reynolds equation resolution may be done by numerical or analytical solutions. A physical analysis of the equation of thin films will identify the most sensitive parameters. The shaft flexibility is taking into account by a modal approach. The fluid-structure coupling process is a simulation, step by step, of the rotor behavior. At each step, the nonlinear fluid force is numerically calculated to obtain the unbalanced shaft response. The results, presented in this paper, concern the dynamic response of unbalanced shaft mounted in adaptive or active bearings: bearings with variable clearance, variable viscosity or variable housing speed. It is shown that the fluid bearing parameters must be adapted to the rotor speed (in particular near or far a critical speed). Then, the paper presents a new kind of active bearing. It works with a mechanical control of the housing position. Several parameters are tested and compared. The robustness of the dynamic control parameters is presented. In conclusion, the bearing adaptation could be very useful to control the shaft dynamic. This limits the effect of the critical speed, in particular by diminishing the shaft amplitude and the dynamic forces transmitted to the housing.展开更多
To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow(GVF) snake mo...To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow(GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.展开更多
文摘The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive and active components will be developed in this paper in order to control the shaft dynamical amplitude. Different models of hydrodynamic bearings behavior are described. The Reynolds equation resolution may be done by numerical or analytical solutions. A physical analysis of the equation of thin films will identify the most sensitive parameters. The shaft flexibility is taking into account by a modal approach. The fluid-structure coupling process is a simulation, step by step, of the rotor behavior. At each step, the nonlinear fluid force is numerically calculated to obtain the unbalanced shaft response. The results, presented in this paper, concern the dynamic response of unbalanced shaft mounted in adaptive or active bearings: bearings with variable clearance, variable viscosity or variable housing speed. It is shown that the fluid bearing parameters must be adapted to the rotor speed (in particular near or far a critical speed). Then, the paper presents a new kind of active bearing. It works with a mechanical control of the housing position. Several parameters are tested and compared. The robustness of the dynamic control parameters is presented. In conclusion, the bearing adaptation could be very useful to control the shaft dynamic. This limits the effect of the critical speed, in particular by diminishing the shaft amplitude and the dynamic forces transmitted to the housing.
基金supported by the National Natural Sciencal Foundation of China(No.61403274)the Tianjin Technology Project of Intelligent Manufacturing(No.15ZXZNGX00160)
文摘To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow(GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.