The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the...The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.展开更多
A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an ada...A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an adaptive optimal control algorithm is proposed. The robust convergence of the proposed control algorithm has been proved and the static control error with the proposed method is also analyzed. The application results of the proposed method to the industrial polypropylene process have verified its feasibility and effectiveness.展开更多
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.
基金Supported by the National Natural Science Foundation of China (60774080) and BJNOVA 2005B 15.
文摘A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an adaptive optimal control algorithm is proposed. The robust convergence of the proposed control algorithm has been proved and the static control error with the proposed method is also analyzed. The application results of the proposed method to the industrial polypropylene process have verified its feasibility and effectiveness.