Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial resp...Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species' response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species,are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee(VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here.Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution ofbutterflies at family level. Also, distribution of butterflies in the area was independent of habitat type,at family level. Besides, we employed indicator group analysis(at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.展开更多
基金funded by The Rufford Foundation(http://www.rufford.org/)
文摘Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species' response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species,are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee(VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here.Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution ofbutterflies at family level. Also, distribution of butterflies in the area was independent of habitat type,at family level. Besides, we employed indicator group analysis(at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.