采用传感系统监测变压器局部放电的变化情况,选取高频电流信号和超声波信号作为变压器局部放电的监测参量,利用改进逆传播(BP)神经网络算法对变压器局部放电量进行建模分析。以D9—QY—40000/220型电力变压器(220 k V变压器)为例进行实...采用传感系统监测变压器局部放电的变化情况,选取高频电流信号和超声波信号作为变压器局部放电的监测参量,利用改进逆传播(BP)神经网络算法对变压器局部放电量进行建模分析。以D9—QY—40000/220型电力变压器(220 k V变压器)为例进行实例研究,结果表明:基于改进BP神经网络的局放预测模型训练集误差系数为0.0118,测试集误差系数为0.0232。此模型的局放预测值与实际值的曲线趋势基本一致,有效地对变压器局部放电量进行预测,为变压器故障诊断奠定了基础。展开更多
文摘采用传感系统监测变压器局部放电的变化情况,选取高频电流信号和超声波信号作为变压器局部放电的监测参量,利用改进逆传播(BP)神经网络算法对变压器局部放电量进行建模分析。以D9—QY—40000/220型电力变压器(220 k V变压器)为例进行实例研究,结果表明:基于改进BP神经网络的局放预测模型训练集误差系数为0.0118,测试集误差系数为0.0232。此模型的局放预测值与实际值的曲线趋势基本一致,有效地对变压器局部放电量进行预测,为变压器故障诊断奠定了基础。