为提高环境和运营变化(environmental and operational variations,EOV)影响下的桥梁损伤检测可靠性,结合逆非线性主成分分析(inverse nonlinear principal component analysis,INLPCA)和极值理论,提出一种新的桥梁损伤检测方法.该方法...为提高环境和运营变化(environmental and operational variations,EOV)影响下的桥梁损伤检测可靠性,结合逆非线性主成分分析(inverse nonlinear principal component analysis,INLPCA)和极值理论,提出一种新的桥梁损伤检测方法.该方法采用INLPCA对桥梁损伤特征进行建模,利用不完备健康监测数据的估计均方误差和添加神经网络训练惩罚项控制INLPCA的非线性程度.采用INLPCA对损伤特征的重构误差和马氏平方距离(Mahalanobis squared distance,MSD)建立损伤指标(ID),最后基于ID的广义极值(generalized extreme value,GEV)分布建立损伤检测阈值.以比利时KW51铁路桥和天津永和斜拉桥为例,验证所提方法的有效性.结果表明,所提方法能准确检测EOV影响下的桥梁损伤,且对不同桥型和不同损伤特征均有良好的适用性.展开更多
利用中国160站逐月降水资料,运用一种基于前馈型人工神经网络的非线性主成分分析方法(nonlinear principal component analysis,NLPCA)研究了中国近50 a四季降水异常分布的非线性特征。结果表明,NLPCA有能力表示出更一般的低维结构特征...利用中国160站逐月降水资料,运用一种基于前馈型人工神经网络的非线性主成分分析方法(nonlinear principal component analysis,NLPCA)研究了中国近50 a四季降水异常分布的非线性特征。结果表明,NLPCA有能力表示出更一般的低维结构特征。四季降水的异常分布都具有一定的非线性相关空间结构,其中春夏季节非线性较强,秋冬季节稍弱;四季降水距平的一维NLPCA近似在非线性主成分取极端相反位相时,对应的空间分布型表现出明显的不对称性。四季降水异常的一维NLPCA近似都比传统一维PCA的近似逼真,且存在季节变化。展开更多
文摘利用中国160站逐月降水资料,运用一种基于前馈型人工神经网络的非线性主成分分析方法(nonlinear principal component analysis,NLPCA)研究了中国近50 a四季降水异常分布的非线性特征。结果表明,NLPCA有能力表示出更一般的低维结构特征。四季降水的异常分布都具有一定的非线性相关空间结构,其中春夏季节非线性较强,秋冬季节稍弱;四季降水距平的一维NLPCA近似在非线性主成分取极端相反位相时,对应的空间分布型表现出明显的不对称性。四季降水异常的一维NLPCA近似都比传统一维PCA的近似逼真,且存在季节变化。