期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
免疫阴性选择分类器在信息恢复中的应用 被引量:7
1
作者 莫宏伟 唐娜 +3 位作者 金鸿章 徐立芳 吕淑萍 管凤旭 《计算机学报》 EI CSCD 北大核心 2005年第8期1314-1319,共6页
文中的信息恢复系统是基于网络获取文本信息的系统,利用基于熵的信息抽取技术将获得的网络文本转换成特征向量文件.免疫阴性选择分类器是基于免疫系统T细胞选择原理设计检测器,利用协同进化算法进化检测器,进化得到的检测器对信息恢复... 文中的信息恢复系统是基于网络获取文本信息的系统,利用基于熵的信息抽取技术将获得的网络文本转换成特征向量文件.免疫阴性选择分类器是基于免疫系统T细胞选择原理设计检测器,利用协同进化算法进化检测器,进化得到的检测器对信息恢复系统中的文本特征向量进行分类.分类后得到的有用文件用于系统中的信息恢复.实验结果表明,与传统的朴素贝叶斯分类器比较,该方法具有更高的分类准确性,不仅验证了免疫阴性选择分类器的良好性能,同时也提高了信息恢复准确性. 展开更多
关键词 自然免疫系统 人工免疫系统 阴性选择分类 信息恢复 数据挖掘
下载PDF
基于肯定选择分类算法的恶意代码检测方法 被引量:5
2
作者 张福勇 赵铁柱 《沈阳工业大学学报》 EI CAS 北大核心 2016年第2期206-210,共5页
针对恶意代码,尤其是顽固、隐匿的未知恶意代码危害日益加剧的问题,提出一种基于肯定选择分类算法的恶意代码检测方法.将样本文件转换成十六进制格式,提取样本文件的所有n-gram,计算具有最大信息增益的N个n-gram的词频,并做归一化处理,... 针对恶意代码,尤其是顽固、隐匿的未知恶意代码危害日益加剧的问题,提出一种基于肯定选择分类算法的恶意代码检测方法.将样本文件转换成十六进制格式,提取样本文件的所有n-gram,计算具有最大信息增益的N个n-gram的词频,并做归一化处理,采用改进的肯定选择分类算法进行分类.该方法保留了肯定选择分类算法高分类准确率的优点,优化了分类器训练过程,提高了训练和检测效率.结果表明,该方法的检测效果优于朴素贝叶斯、贝叶斯网络、支持向量机和C4.5决策树等算法. 展开更多
关键词 网络与信息安全 入侵检测 恶意代码 恶意代码检测 肯定选择分类算法 机器学习 特征选择 静态分析
下载PDF
基于反馈的人工负选择分类算法
3
作者 沈彤 关毅 董喜双 《智能计算机与应用》 2013年第5期61-65,共5页
人工免疫系统是受人体免疫系统启发的一种智能算法,负选择算法作为人工免疫系统的核心算法之一,在各领域被广泛研究和应用。从两方面对负选择算法进行了改进,首先对记忆细胞数量对识别准确率的影响进行了研究,提出一种反馈学习的思想来... 人工免疫系统是受人体免疫系统启发的一种智能算法,负选择算法作为人工免疫系统的核心算法之一,在各领域被广泛研究和应用。从两方面对负选择算法进行了改进,首先对记忆细胞数量对识别准确率的影响进行了研究,提出一种反馈学习的思想来进行记忆细胞数量的优化,实现提高分类过程中的识别准确率。然后为了解决传统负选择算法存在检测器覆盖空间存在交集、整体覆盖空间较低的问题,提出通过记忆细胞识别半径的自动调整,减少检测器数量,提高整体覆盖空间的方法,这种方法避免了"交叉识别(overlap)"和"识别洞(hole)"现象的出现。最后,实验结果表明算法在解决文本分类问题是有效可行的,其在路透社文本分类数据集上分类准确率达到了93.89%。 展开更多
关键词 选择算法 人工负选择分类 反馈学习
下载PDF
选择分类排序演示
4
作者 张允中 《中华学习机》 1990年第5期26-26,共1页
关键词 选择分类 排序
下载PDF
基于改进分类器动态选择算法的滚珠丝杠副状态识别
5
作者 文娟 《高技术通讯》 CAS 北大核心 2024年第4期396-405,共10页
为提升滚珠丝杠副的性能状态识别精度,提出一种改进的分类器动态选择算法。该算法借助邻域成分分析(NCA),准确并自适应地定义测试样本的邻域,无需选择距离度量方式,从而更加准确地衡量多分类器系统中各子分类器对于测试样本进行正确分... 为提升滚珠丝杠副的性能状态识别精度,提出一种改进的分类器动态选择算法。该算法借助邻域成分分析(NCA),准确并自适应地定义测试样本的邻域,无需选择距离度量方式,从而更加准确地衡量多分类器系统中各子分类器对于测试样本进行正确分类的潜力,解决了传统分类器动态选择算法精度受限于距离度量方式选择是否合适的问题。将所提出的分类器动态选择算法应用于滚珠丝杠副状态识别中,首先利用AdaBoost算法离线训练反向传播(BP)神经网络集合,然后依据实时信号特征,采用改进的分类器动态选择算法从分类器集合中选取最合适的子分类器进行状态鉴定,从而实现更好的识别效果。实验结果表明,提出方法的状态识别准确率能够达到97.22%,高于BP神经网络、AdaBoost与传统分类器动态选择算法,且对于不同的性能状态均有较高的识别精度。 展开更多
关键词 分类器动态选择 邻域成分分析(NCA) 状态识别 滚珠丝杠副 分类器系统
下载PDF
基于特征选择下机器学习对阿尔茨海默病的分类 被引量:5
6
作者 刘德华 殷国盛 范炤 《中国医学影像学杂志》 CSCD 北大核心 2023年第2期167-174,共8页
目的利用机器学习通过分析结构性磁共振成像(sMRI)数据和人口统计学资料,实现对阿尔茨海默病(AD)病程的分类与识别。资料与方法选取阿尔茨海默病影像学倡议数据库中编号4018-5120的543例研究对象[认知功能正常者(NC)139位、早期轻度认... 目的利用机器学习通过分析结构性磁共振成像(sMRI)数据和人口统计学资料,实现对阿尔茨海默病(AD)病程的分类与识别。资料与方法选取阿尔茨海默病影像学倡议数据库中编号4018-5120的543例研究对象[认知功能正常者(NC)139位、早期轻度认知障碍(EMCI)220例、晚期轻度认知障碍(LMCI)108例、AD患者76例]。对272项sMRI数据和4项人口统计学指标数据,结合随机森林(RF)的特征重要性排序和基于分类精度的序列前向选择方法(CA-SFS)进行特征选择,甄选出最优特征个数,将其代入4种机器学习方法[正则化的逻辑回归(L1-LR)、支持向量机(SVM)、BP神经网络(BPNN)、RF]中自动化识别出最优分类模型,观察其对AD病程进行两两分类的效果,并使用受试者工作特征曲线评价效能。结果RF模型对NC-EMCI、NC-LMCI、EMCI-LMCI和LMCI-AD的预测分类准确度分别达到86.67%、88.24%、93.48%和100.00%,SVM模型对NC-AD的分类预测准确度达到100%,L1-LR模型对EMCI-AD的分类预测准确度达到95.24%。结论基于RF和CA-SFS特征选择,再利用机器学习方法对AD进行多个二分类有稳定、较好的分类效果。 展开更多
关键词 阿尔茨海默病 机器学习 结构性磁共振成像 基于分类精度的序列前向选择方法 分类
下载PDF
银行客户信用评估动态分类器集成选择模型 被引量:29
7
作者 肖进 刘敦虎 +1 位作者 顾新 汪寿阳 《管理科学学报》 CSSCI 北大核心 2015年第3期114-126,共13页
现实的银行客户信用评估数据常包含大量的缺失值,这在很大程度上影响了信用评估模型的性能.针对已有模型的不足,提出了面向缺失数据的动态分类器集成选择模型DCESM.该模型充分利用数据集中所包含的已知信息,在训练信用评估模型之前不需... 现实的银行客户信用评估数据常包含大量的缺失值,这在很大程度上影响了信用评估模型的性能.针对已有模型的不足,提出了面向缺失数据的动态分类器集成选择模型DCESM.该模型充分利用数据集中所包含的已知信息,在训练信用评估模型之前不需要事先对缺失数据进行预处理,从而减少了对数据缺失机制假设以及数据分布模型的依赖.从UCI数据库中选择两个银行信用卡业务信用评估数据集进行实证分析,结果表明,与4种常用的基于插补法的多分类器集成模型以及1种直接面向缺失数据建模的集成模型相比,DCESM模型能够取得更好的客户信用评估性能. 展开更多
关键词 信用评估 缺失数据 动态分类器集成选择
下载PDF
美国2005版卡内基高校社会服务选择性分类体系的内容与特点分析 被引量:4
8
作者 张玉岩 隋春侠 《比较教育研究》 CSSCI 北大核心 2008年第2期69-72,共4页
美国2005版卡内基高等教育机构分类由综合性分类体系和选择性分类体系两部分构成。其中,综合性分类体系已经在2005年11月份发布,并受到国内学者的关注。而社会服务选择性分类体系,在基金会的努力和高校的积极参与下于2006年12月份完成,... 美国2005版卡内基高等教育机构分类由综合性分类体系和选择性分类体系两部分构成。其中,综合性分类体系已经在2005年11月份发布,并受到国内学者的关注。而社会服务选择性分类体系,在基金会的努力和高校的积极参与下于2006年12月份完成,标志着2005版分类在总体结构上基本完整。本文分析了基金会推出高校社会服务选择性分类体系的原因,阐述了其分类标准和体系内容,并在此基础上对该体系的成效、问题、导向和实用功能等进行了讨论。 展开更多
关键词 社会服务 选择分类
下载PDF
基于自适应无参经验小波变换和选择集成分类模型的运动想象 被引量:5
9
作者 何群 王煜文 +2 位作者 杜硕 陈晓玲 谢平 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第11期278-289,共12页
运动想象模式识别率的提高对脑机接口(BCI)技术的应用具有重要意义,本文采用自适应无参经验小波变换(APEWT)和选择集成分类模型相结合的方法提高脑电(EEG)信号的分类识别准确率.首先,通过APEWT将EEG信号分解成不同的模态;然后,使用最优... 运动想象模式识别率的提高对脑机接口(BCI)技术的应用具有重要意义,本文采用自适应无参经验小波变换(APEWT)和选择集成分类模型相结合的方法提高脑电(EEG)信号的分类识别准确率.首先,通过APEWT将EEG信号分解成不同的模态;然后,使用最优模态重构后的信号计算其能量谱(ES)特征,使用最优模态分量计算其边际谱(MS)特征;最后,将不同时间段的ES特征和不同频段的MS特征输入到构建的选择集成分类模型中,从而得到其分类结果,并将该方法与其他4种组合方法进行比较.实验结果表明,本文方法具有较好分类准确率和实时性,其平均分类正确率高于其他4种方法,同时较近期使用相同数据的文献也有优势.本文为在线运动想象类BCI的应用提供了新的方法和思路. 展开更多
关键词 自适应无参经验小波变换 选择集成分类模型 运动想象 脑机接口
下载PDF
基于选择性贝叶斯分类器的变压器故障诊断 被引量:21
10
作者 赵文清 《电力自动化设备》 EI CSCD 北大核心 2011年第2期44-47,共4页
电力变压器故障诊断中的测试数据信息不完备、有偏差,而贝叶斯网络处理不确定性问题能力强。提出了一种基于选择性贝叶斯分类器的、溶解气体分析结合其他电气试验结果的变压器故障诊断方法,并建立了变压器选择性贝叶斯故障诊断模型。详... 电力变压器故障诊断中的测试数据信息不完备、有偏差,而贝叶斯网络处理不确定性问题能力强。提出了一种基于选择性贝叶斯分类器的、溶解气体分析结合其他电气试验结果的变压器故障诊断方法,并建立了变压器选择性贝叶斯故障诊断模型。详细阐述并验证了该方法解决信息不完备问题的优越性。该模型还可以通过不断积累完善训练样本,自动修正网络结构参数和概率分布参数。实验表明提出的选择性贝叶斯分类器适于变压器故障诊断。 展开更多
关键词 变压器 故障诊断 贝叶斯网络 选择分类
下载PDF
类相关性影响可变选择性贝叶斯分类器 被引量:8
11
作者 程玉虎 仝瑶瑶 王雪松 《电子学报》 EI CAS CSCD 北大核心 2011年第7期1628-1633,共6页
在最大相关最小冗余(mRMR)属性选择方法的基础上,通过设置一个调节因子来改变类别相关性在属性选择中的影响程度,解决mRMR方法易于引入冗余属性的问题,提出一种类相关性影响可变选择性贝叶斯分类器(CCRI SBC).为克服人为指定属性个数易... 在最大相关最小冗余(mRMR)属性选择方法的基础上,通过设置一个调节因子来改变类别相关性在属性选择中的影响程度,解决mRMR方法易于引入冗余属性的问题,提出一种类相关性影响可变选择性贝叶斯分类器(CCRI SBC).为克服人为指定属性个数易于导致的分类结果随意性,采用贝叶斯信息准则来自动确定最优属性个数.为使CCRI SBC能够处理含有连续变量的数据集,提出等频类别依赖最大化离散化方法,具有分类准确率高和离散化时间短的优点.UCI数据集的实验结果表明,本文方法能够有效处理离散和连续高维数据的分类问题. 展开更多
关键词 选择性贝叶斯分类 属性选择 最大相关最小冗余 贝叶斯信息准则 离散化
下载PDF
基于动态分类器选择的网络入侵检测方法 被引量:1
12
作者 米爱中 钟诚 李智 《计算机工程与应用》 CSCD 北大核心 2005年第27期123-125,共3页
提出了一种基于动态分类器选择的网络入侵检测方法,该方法通过增加训练过程以及对分类器性能的静态估算来减少分类时需要的计算资源,提高分类速度,以满足网络入侵检测对实时性的要求。实验表明,该方法的性能优于基于静态分类器选择的网... 提出了一种基于动态分类器选择的网络入侵检测方法,该方法通过增加训练过程以及对分类器性能的静态估算来减少分类时需要的计算资源,提高分类速度,以满足网络入侵检测对实时性的要求。实验表明,该方法的性能优于基于静态分类器选择的网络入侵检测方法。 展开更多
关键词 动态分类选择 网络入侵检测 静态分类选择 模式识别
下载PDF
基于聚类选择的分类器集成 被引量:2
13
作者 王正群 张天平 乐晓蓉 《计算机应用研究》 CSCD 北大核心 2007年第12期85-87,共3页
提出了一种基于聚类选择的分类器集成方法,通过聚类把模式特征空间划分成不相交的区域,对于初始分类器集合,各区域给出分类器的删除分值,各分类器总分值确定其删除优先级别,由删除优先级别选择一组分类器组成集成。理论分析和实验结果表... 提出了一种基于聚类选择的分类器集成方法,通过聚类把模式特征空间划分成不相交的区域,对于初始分类器集合,各区域给出分类器的删除分值,各分类器总分值确定其删除优先级别,由删除优先级别选择一组分类器组成集成。理论分析和实验结果表明,基于聚类选择的分类器集成方法能够更好地对模式进行分类。 展开更多
关键词 分类器集成 聚类 分类选择 差异性 神经网络
下载PDF
一种分类器选择方法 被引量:1
14
作者 牛鹏 魏维 +1 位作者 李峻金 郭建国 《计算机工程》 CAS CSCD 北大核心 2010年第14期163-165,共3页
在按照"测试-选择"方法设计多分类器系统时,从超量生成的候选分类器集中选取一个最优子集是关键环节之一。基于此,定义一个组合适宜度概念,提出一种新的分类器选择方法。将该方法用于高光谱遥感数据分类实验中,并从具有27个... 在按照"测试-选择"方法设计多分类器系统时,从超量生成的候选分类器集中选取一个最优子集是关键环节之一。基于此,定义一个组合适宜度概念,提出一种新的分类器选择方法。将该方法用于高光谱遥感数据分类实验中,并从具有27个候选的分类器集中挑选子集。实验结果表明,该方法在选择效率和识别精度方面具有优势,能保证所选子集的泛化能力。 展开更多
关键词 组合适宜度 分类选择 高光谱数据
下载PDF
基于多分类器动态选择与成本敏感优化集成的电信客户流失预测研究 被引量:10
15
作者 罗彬 邵培基 夏国恩 《管理学报》 CSSCI 北大核心 2012年第9期1373-1381,共9页
针对不同样本在特征空间中具有不同的区域特性和不同分类算法之间的预测互补性,在电信客户流失预测理论基础上,融合多分类器动态集成理论和成本敏感学习理论,建立了电信客户流失多分类器集成预测的利润函数,并提出了一类新的基于多分类... 针对不同样本在特征空间中具有不同的区域特性和不同分类算法之间的预测互补性,在电信客户流失预测理论基础上,融合多分类器动态集成理论和成本敏感学习理论,建立了电信客户流失多分类器集成预测的利润函数,并提出了一类新的基于多分类器动态选择与成本敏感优化集成的电信客户流失预测模型。首先使用K均值聚类法聚类训练样本成多个分区;接着使用NaiveBayes算法、多层感知机算法和J48算法在各分区样本上构建客户流失预测子分类器;最后使用改进人工鱼群算法分别对各分区的子分类器进行成本敏感优化集成。实验结果表明,所提出的基于多分类器动态选择与成本敏感优化集成模型的分类性能不仅优于由训练集全体样本所构建的3个单模型,也优于基于改进人工鱼群算法优化集成这3个单模型而得到的集成模型。 展开更多
关键词 客户流失预测 分类器动态选择 成本敏感优化集成 成本敏感学习 人工鱼群算法
下载PDF
集成特征选择的广义粗集方法与多分类器融合 被引量:10
16
作者 孙亮 韩崇昭 +1 位作者 沈建京 戴宁 《自动化学报》 EI CSCD 北大核心 2008年第3期298-304,共7页
为改善多分类器系统的分类性能,提出了基于广义粗集的集成特征选择方法.为在集成特征选择的同时获取各特征空间中的多类模式可分性信息,研究并提出了关于多决策表的相对优势决策约简,给出了关于集成特征选择的集成属性约简(Ensemble att... 为改善多分类器系统的分类性能,提出了基于广义粗集的集成特征选择方法.为在集成特征选择的同时获取各特征空间中的多类模式可分性信息,研究并提出了关于多决策表的相对优势决策约简,给出了关于集成特征选择的集成属性约简(Ensemble attribute reduction,EAR)方法,结合基于知识发现的KD-DWV算法进行了高光谱遥感图像植被分类比较实验.结果表明,EAR方法与合适的多分类器融合算法结合可有效提高多分类器融合的推广性. 展开更多
关键词 集成特征选择 分类器融合 广义粗集 高光谱
下载PDF
一种新的启发式分类器选择方法 被引量:1
17
作者 郝红卫 陈志强 《计算机工程》 CAS CSCD 北大核心 2008年第2期206-208,共3页
分类器选择是一种设计多分类器系统的有效方法,从给定候选分类器集中挑选出一个子集,使得该子集集成性能最佳。现有的分类器选择方法大多采用基于集成精度的随机搜索方法,但巨大的搜索复杂度限制了它们在更大系统中的应用。该文提出一... 分类器选择是一种设计多分类器系统的有效方法,从给定候选分类器集中挑选出一个子集,使得该子集集成性能最佳。现有的分类器选择方法大多采用基于集成精度的随机搜索方法,但巨大的搜索复杂度限制了它们在更大系统中的应用。该文提出一种新的选择标准——IWCECR及一种基于IWCECR的启发式搜索算法,在手写体数字识别的实验中,从20个候选分类器中挑选子集,结果表明,该方法具有较高的搜索效率,在子集集成性能方面仅次于穷举法。 展开更多
关键词 分类选择 搜索算法 选择标准 手写体数字识别
下载PDF
基于多分类离散选择模型的农产品安全风险评估研究 被引量:4
18
作者 张东玲 高齐圣 《农业系统科学与综合研究》 CSCD 2009年第1期5-9,共5页
针对农产品安全风险评估问题,提出了一种基于多分类离散选择模型的风险评估方法。在建立农产品安全风险评估指标体系的基础上,建立有序多分类Logistic模型,给出了风险判别分析计算步骤。结合山东省出口蔬菜备案基地评价数据进行了实证... 针对农产品安全风险评估问题,提出了一种基于多分类离散选择模型的风险评估方法。在建立农产品安全风险评估指标体系的基础上,建立有序多分类Logistic模型,给出了风险判别分析计算步骤。结合山东省出口蔬菜备案基地评价数据进行了实证研究。 展开更多
关键词 农产品安全 风险评估 分类离散选择模型 判别分析 语言信息 专家意见综合
下载PDF
基于静态分类器选择的网络入侵检测方法
19
作者 米爱中 沈记全 +1 位作者 郑雪峰 涂序彦 《计算机工程》 CAS CSCD 北大核心 2007年第4期140-142,共3页
计算机网络的安全在当今社会起着举足轻重的作用。该文将基于分类器选择的模式识别方法应用于入侵检测,提出了一种基于静态分类器选择的网络入侵检测方法。该方法对经过聚类获得的各个区域采用新的策略进一步划分,在划分后的子区域上选... 计算机网络的安全在当今社会起着举足轻重的作用。该文将基于分类器选择的模式识别方法应用于入侵检测,提出了一种基于静态分类器选择的网络入侵检测方法。该方法对经过聚类获得的各个区域采用新的策略进一步划分,在划分后的子区域上选择分类器,结合了最近邻规则,减小静态分类器选择方法的误差,提高了检测性能。聚类选择(CS)是典型的静态分类器选择方法,在KDD’99的入侵检测数据集上的实验表明,该方法的性能优于基于聚类选择的网络入侵检测方法。 展开更多
关键词 静态分类选择 网络入侵检测 聚类选择 模式识别
下载PDF
基于选择性贝叶斯分类器的变压器故障诊断 被引量:1
20
作者 赵文清 《电工文摘》 2011年第5期34-37,共4页
电力变压器故障诊断中的测试数据信息不完备、有偏差,而贝叶斯网络处理不确定性问题能力强。提出了一种基于选择性贝叶斯分类器的、溶解气体分析结合其他电气试验结果的变压器故障诊断方法。并建立了变压器选择性贝叶斯故障诊断模型。... 电力变压器故障诊断中的测试数据信息不完备、有偏差,而贝叶斯网络处理不确定性问题能力强。提出了一种基于选择性贝叶斯分类器的、溶解气体分析结合其他电气试验结果的变压器故障诊断方法。并建立了变压器选择性贝叶斯故障诊断模型。详细阐述并验证了该方法解决信息不完备问题的优越性。该模型还可以通过不断积累完善训练样本,自动修正网络结构参数和概率分布参数。实验表明提出的选择性贝叶斯分类器适于变压器故障诊断。 展开更多
关键词 变压器 故障诊断 贝叶斯网络 选择分类
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部