期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
浅谈课堂教学中如何指导学生自主学习 被引量:2
1
作者 吕福全 《中国科教创新导刊》 2010年第36期199-199,共1页
新课程改革强调在课堂教学中要发挥学生的主体作用,培养学生的自主学习的能力,以提高课堂教学的效率。在老师的指导下,学生自主确立学习目标,并根据自己的能力自主选取擅长的学习方法,采用"自主阅读—思考交流—合作探究—拓展延伸"... 新课程改革强调在课堂教学中要发挥学生的主体作用,培养学生的自主学习的能力,以提高课堂教学的效率。在老师的指导下,学生自主确立学习目标,并根据自己的能力自主选取擅长的学习方法,采用"自主阅读—思考交流—合作探究—拓展延伸"的"四部学习法",通过与老师、同学、文本的对话、交流,对文本进行逐层深入的自主研读,合作探究。然后通过丰富多样的形式进行自主实践运用,以达到"温故而知新"进而"温故而创新"的目的。 展开更多
关键词 自主学习 确立学习目标 选择学习方法 四步学习 自主实践运用
下载PDF
A Heterogeneous Information Fusion Deep Reinforcement Learning for Intelligent Frequency Selection of HF Communication 被引量:6
2
作者 Xin Liu Yuhua Xu +3 位作者 Yunpeng Cheng Yangyang Li Lei Zhao Xiaobo Zhang 《China Communications》 SCIE CSCD 2018年第9期73-84,共12页
The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the cro... The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the crowded spectrum, the time-varying channels, and the malicious intelligent jamming. The existing frequency hopping, automatic link establishment and some new anti-jamming technologies can not completely solve the above problems. In this article, we adopt deep reinforcement learning to solve this intractable challenge. First, the combination of the spectrum state and the channel gain state is defined as the complex environmental state, and the Markov characteristic of defined state is analyzed and proved. Then, considering that the spectrum state and channel gain state are heterogeneous information, a new deep Q network(DQN) framework is designed, which contains multiple sub-networks to process different kinds of information. Finally, aiming to improve the learning speed and efficiency, the optimization targets of corresponding sub-networks are reasonably designed, and a heterogeneous information fusion deep reinforcement learning(HIF-DRL) algorithm is designed for the specific frequency selection. Simulation results show that the proposed algorithm performs well in channel prediction, jamming avoidance and frequency channel selection. 展开更多
关键词 HF communication ANTI-JAMMING intelligent frequency selection markov decision process deep reinforcement learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部