Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermody...Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermodynamics. In previous studies, chemoselective performances were found de‐manding and sensitive to H2 pressure. In this regard, we manipulate the chemical/physical charac‐teristics of the catalyst supports via doping Nb into WOx and prepared 1D needle‐, 2D flake‐, and 3D sphere‐stack mesoporous structured Nb‐WOx with increased surface acid sites. Moreover, Nb dop‐ing can successfully inhibit the over‐reduction of active W species during glycerol hydrogenolysis and substantially broaden the optimal H2 pressure from 1 to 5 MPa. When Nb doping is 2%, sup‐ported Pt catalysts showed promising performance for the selective hydrogenolysis of glycerol to 1,3‐PD over an unprecedentedly wide H2 pressure range, which will guarantee better catalyst sta‐bility in the long run, as well as expand their applications to other hydrogen‐related reactions.展开更多
Selective hydrogenolysis of biomass‐derived furfuryl alcohol(FFA)to 1,5‐and 1,2‐pentanediol(PeD)was conducted over Cu‐LaCoO3 catalysts with different Cu loadings;the catalysts were derived from perovskite structur...Selective hydrogenolysis of biomass‐derived furfuryl alcohol(FFA)to 1,5‐and 1,2‐pentanediol(PeD)was conducted over Cu‐LaCoO3 catalysts with different Cu loadings;the catalysts were derived from perovskite structures prepared by a one‐step citrate complexing method.The catalytic performances of the Cu‐LaCoO3 catalysts were found to depend on the Cu loading and pretreatment conditions.The catalyst with 10 wt%Cu loading exhibited the best catalytic performance after prereduction in 5%H2‐95%N2,achieving a high FFA conversion of 100%and selectivity of 55.5%for 1,5‐pentanediol(40.3%)and 1,2‐pentanediol(15.2%)at 413 K and 6 MPa H2.This catalyst could be reused four times without a loss of FFA conversion but it resulted in a slight decrease in pentanediol selectivity.Correlation between the structural changes in the catalysts at different states and the simultaneous variation in the catalytic performance revealed that cooperative catalysis between Cu0 and CoO promoted the hydrogenolysis of FFA to PeDs,especially to 1,5‐PeD,while Co0 promoted the hydrogenation of FFA to tetrahydrofurfuryl alcohol(THFA).Therefore,it is suggested that a synergetic effect between balanced Cu0 and CoO sites plays a critical role in achieving a high yield of PeDs with a high 1,5‐/1,2‐pentanediol selectivity ratio during FFA hydrogenolysis.展开更多
Recently the LTAG technology combining selective hydro-saturation of LCO with selective catalytic cracking technology for producing high-octane gasoline or light aromatic hydrocarbons has passed technical appraisal.
基金supported by the National Basic Research Program of China(973 Program,2011CB201400)the National Natural Science Foundation of China(21173008,21373019,21433001)~~
基金supported by the National Natural Science Foundation of China (2169008, 21690084, 21673228, 21303187, 21403218)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)+1 种基金DICP ZZBS 201612Key Projects for Fundamental Research and Development of China (2016YFA0202801)~~
文摘Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermodynamics. In previous studies, chemoselective performances were found de‐manding and sensitive to H2 pressure. In this regard, we manipulate the chemical/physical charac‐teristics of the catalyst supports via doping Nb into WOx and prepared 1D needle‐, 2D flake‐, and 3D sphere‐stack mesoporous structured Nb‐WOx with increased surface acid sites. Moreover, Nb dop‐ing can successfully inhibit the over‐reduction of active W species during glycerol hydrogenolysis and substantially broaden the optimal H2 pressure from 1 to 5 MPa. When Nb doping is 2%, sup‐ported Pt catalysts showed promising performance for the selective hydrogenolysis of glycerol to 1,3‐PD over an unprecedentedly wide H2 pressure range, which will guarantee better catalyst sta‐bility in the long run, as well as expand their applications to other hydrogen‐related reactions.
文摘Selective hydrogenolysis of biomass‐derived furfuryl alcohol(FFA)to 1,5‐and 1,2‐pentanediol(PeD)was conducted over Cu‐LaCoO3 catalysts with different Cu loadings;the catalysts were derived from perovskite structures prepared by a one‐step citrate complexing method.The catalytic performances of the Cu‐LaCoO3 catalysts were found to depend on the Cu loading and pretreatment conditions.The catalyst with 10 wt%Cu loading exhibited the best catalytic performance after prereduction in 5%H2‐95%N2,achieving a high FFA conversion of 100%and selectivity of 55.5%for 1,5‐pentanediol(40.3%)and 1,2‐pentanediol(15.2%)at 413 K and 6 MPa H2.This catalyst could be reused four times without a loss of FFA conversion but it resulted in a slight decrease in pentanediol selectivity.Correlation between the structural changes in the catalysts at different states and the simultaneous variation in the catalytic performance revealed that cooperative catalysis between Cu0 and CoO promoted the hydrogenolysis of FFA to PeDs,especially to 1,5‐PeD,while Co0 promoted the hydrogenation of FFA to tetrahydrofurfuryl alcohol(THFA).Therefore,it is suggested that a synergetic effect between balanced Cu0 and CoO sites plays a critical role in achieving a high yield of PeDs with a high 1,5‐/1,2‐pentanediol selectivity ratio during FFA hydrogenolysis.
文摘Recently the LTAG technology combining selective hydro-saturation of LCO with selective catalytic cracking technology for producing high-octane gasoline or light aromatic hydrocarbons has passed technical appraisal.