Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i...Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.展开更多
Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a ...Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.展开更多
基金Supported by China 973 Program (No.2002CB312200), the National Natural Science Foundation of China (No.60574019 and No.60474045), the Key Technologies R&D Program of Zhejiang Province (No.2005C21087) and the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.
基金Supported by the National Natural Science Foundation of China under Grant No.60704004the Fundamental Research Funds for the Central University under Grant No.HEUCFT1005
文摘Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.