In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and...In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and the choice behavior utility function is established combining trip time, search time, waiting time, access time and parking fee. By the utility function, a probit-based parking choice behavior model is constructed. On the basis of these, the curb parking pricing model is deduced by considering the constrained conditions, and an incremental assignment algorithm of the model is also designed. Finally, the model is applied to the parking planning of Tongling city. It is pointed out that the average parking time of curb parking decreases 34%, and the average turnover rate increases 67% under the computed parking price system. The results show that the model can optimize the utilization of static traffic facilities.展开更多
The purpose of this paper is to reconsider the utility representation problem of preferences,Sev-eral representation theorems are obtained on general choice spaces.Preferences having continuous utility functions are c...The purpose of this paper is to reconsider the utility representation problem of preferences,Sev-eral representation theorems are obtained on general choice spaces.Preferences having continuous utility functions are characterized by their continuities and countable satiation.It is showed that on a pairwise separable choice space,the sufficient and necessary condition for a preference to be represented by a contin-uous utility function is that the preference is continuous and countably satiable.For monotone prefer-ences,we obtain that any space has continuous utility representations.展开更多
High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional dat...High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional data poses many challenges for statisticians. Feature selection and variable selection are fundamental for high-dimensional data analysis. The sparsity principle, which assumes that only a small number of predictors contribute to the response, is frequently adopted and deemed useful in the analysis of high-dimensional data.Following this general principle, a large number of variable selection approaches via penalized least squares or likelihood have been developed in the recent literature to estimate a sparse model and select significant variables simultaneously. While the penalized variable selection methods have been successfully applied in many highdimensional analyses, modern applications in areas such as genomics and proteomics push the dimensionality of data to an even larger scale, where the dimension of data may grow exponentially with the sample size. This has been called ultrahigh-dimensional data in the literature. This work aims to present a selective overview of feature screening procedures for ultrahigh-dimensional data. We focus on insights into how to construct marginal utilities for feature screening on specific models and motivation for the need of model-free feature screening procedures.展开更多
基金The National Natural Science Foundation of China(No50308005), the National Basic Research Program of China (973Program) (No2006CB705500)
文摘In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and the choice behavior utility function is established combining trip time, search time, waiting time, access time and parking fee. By the utility function, a probit-based parking choice behavior model is constructed. On the basis of these, the curb parking pricing model is deduced by considering the constrained conditions, and an incremental assignment algorithm of the model is also designed. Finally, the model is applied to the parking planning of Tongling city. It is pointed out that the average parking time of curb parking decreases 34%, and the average turnover rate increases 67% under the computed parking price system. The results show that the model can optimize the utilization of static traffic facilities.
基金This work is supported by the natural science foundation.
文摘The purpose of this paper is to reconsider the utility representation problem of preferences,Sev-eral representation theorems are obtained on general choice spaces.Preferences having continuous utility functions are characterized by their continuities and countable satiation.It is showed that on a pairwise separable choice space,the sufficient and necessary condition for a preference to be represented by a contin-uous utility function is that the preference is continuous and countably satiable.For monotone prefer-ences,we obtain that any space has continuous utility representations.
基金supported by National Natural Science Foundation of China(Grant Nos.11401497 and 11301435)the Fundamental Research Funds for the Central Universities(Grant No.T2013221043)+3 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities(Grant No.20720140034)National Institute on Drug Abuse,National Institutes of Health(Grant Nos.P50 DA036107 and P50 DA039838)National Science Foundation(Grant No.DMS1512422)The content is solely the responsibility of the authors and does not necessarily represent the official views of National Institute on Drug Abuse, National Institutes of Health, National Science Foundation or National Natural Science Foundation of China
文摘High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional data poses many challenges for statisticians. Feature selection and variable selection are fundamental for high-dimensional data analysis. The sparsity principle, which assumes that only a small number of predictors contribute to the response, is frequently adopted and deemed useful in the analysis of high-dimensional data.Following this general principle, a large number of variable selection approaches via penalized least squares or likelihood have been developed in the recent literature to estimate a sparse model and select significant variables simultaneously. While the penalized variable selection methods have been successfully applied in many highdimensional analyses, modern applications in areas such as genomics and proteomics push the dimensionality of data to an even larger scale, where the dimension of data may grow exponentially with the sample size. This has been called ultrahigh-dimensional data in the literature. This work aims to present a selective overview of feature screening procedures for ultrahigh-dimensional data. We focus on insights into how to construct marginal utilities for feature screening on specific models and motivation for the need of model-free feature screening procedures.