The estimation of gear selectivity is a critical issue in fishery stock assessment and management.Several methods have been developed for estimating gillnet selectivity,but they all have their limitations,such as inap...The estimation of gear selectivity is a critical issue in fishery stock assessment and management.Several methods have been developed for estimating gillnet selectivity,but they all have their limitations,such as inappropriate objective function in data fitting,lack of unique estimates due to the difficulty in finding global minima in minimization,biased estimates due to outliers,and estimations of selectivity being influenced by the predetermined selectivity functions.In this study,we develop a new algorithm that can overcome the above-mentioned problems in estimating the gillnet selectivity.The proposed algorithms include minimizing the sum of squared vertical distances between two adjacent points and minimizing the weighted sum of squared vertical distances between two adjacent points in the presence of outliers.According to the estimated gillnet selectivity curve,the selectivity function can also be determined.This study suggests that the proposed algorithm is not sensitive to outliers in selectivity data and improves on the previous methods in estimating gillnet selectivity and relative population density of fish when a gillnet is used as a sampling tool.We suggest the proposed approach be used in estimating gillnet selectivity.展开更多
The objective of this article is to introduce a generalized algorithm to produce the m-point n-ary approximating subdivision schemes(for any integer m, n ≥ 2). The proposed algorithm has been derived from uniform B-s...The objective of this article is to introduce a generalized algorithm to produce the m-point n-ary approximating subdivision schemes(for any integer m, n ≥ 2). The proposed algorithm has been derived from uniform B-spline blending functions. In particular, we study statistical and geometrical/traditional methods for the model selection and assessment for selecting a subdivision curve from the proposed family of schemes to model noisy and noisy free data. Moreover, we also discuss the deviation of subdivision curves generated by proposed family of schemes from convex polygonal curve. Furthermore, visual performances of the schemes have been presented to compare numerically the Gibbs oscillations with the existing family of schemes.展开更多
基金Supported by National Key Technology R&D Program of China(No.2006BAD09A05)
文摘The estimation of gear selectivity is a critical issue in fishery stock assessment and management.Several methods have been developed for estimating gillnet selectivity,but they all have their limitations,such as inappropriate objective function in data fitting,lack of unique estimates due to the difficulty in finding global minima in minimization,biased estimates due to outliers,and estimations of selectivity being influenced by the predetermined selectivity functions.In this study,we develop a new algorithm that can overcome the above-mentioned problems in estimating the gillnet selectivity.The proposed algorithms include minimizing the sum of squared vertical distances between two adjacent points and minimizing the weighted sum of squared vertical distances between two adjacent points in the presence of outliers.According to the estimated gillnet selectivity curve,the selectivity function can also be determined.This study suggests that the proposed algorithm is not sensitive to outliers in selectivity data and improves on the previous methods in estimating gillnet selectivity and relative population density of fish when a gillnet is used as a sampling tool.We suggest the proposed approach be used in estimating gillnet selectivity.
基金supported by the National Research Program for Universities(No.3183)
文摘The objective of this article is to introduce a generalized algorithm to produce the m-point n-ary approximating subdivision schemes(for any integer m, n ≥ 2). The proposed algorithm has been derived from uniform B-spline blending functions. In particular, we study statistical and geometrical/traditional methods for the model selection and assessment for selecting a subdivision curve from the proposed family of schemes to model noisy and noisy free data. Moreover, we also discuss the deviation of subdivision curves generated by proposed family of schemes from convex polygonal curve. Furthermore, visual performances of the schemes have been presented to compare numerically the Gibbs oscillations with the existing family of schemes.