In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef...In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated.展开更多
In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and...In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and the choice behavior utility function is established combining trip time, search time, waiting time, access time and parking fee. By the utility function, a probit-based parking choice behavior model is constructed. On the basis of these, the curb parking pricing model is deduced by considering the constrained conditions, and an incremental assignment algorithm of the model is also designed. Finally, the model is applied to the parking planning of Tongling city. It is pointed out that the average parking time of curb parking decreases 34%, and the average turnover rate increases 67% under the computed parking price system. The results show that the model can optimize the utilization of static traffic facilities.展开更多
The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning...The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.展开更多
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm r...In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.展开更多
Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow ...Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.展开更多
A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The resul...A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved.展开更多
The combined selection index used in the breeding of new Yorkshire dam line with high prolificacy according to breeding objects was formulated as /:2.272E- BVNB-0.056EBVDAYS. After 5 generations breeding, the two mai...The combined selection index used in the breeding of new Yorkshire dam line with high prolificacy according to breeding objects was formulated as /:2.272E- BVNB-0.056EBVDAYS. After 5 generations breeding, the two main selected traits such as total number of born and age at 100 kg weight was 12.17 piglets/litter and 165.18 d, respectively. The genetic improvements per generates was 0.156 and -2.198, respec- tively. The breeding objects of the new Yorkshire dam line with high prolificacy were basically reached. It indicated that the methods and index could be used in pig breeding.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,...The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.展开更多
[Objective] The aim was to study the internal relationship of the four theories on natural selection unit. [Method] The value field of fitness of heterozygote was investigated by constructing mathematical models, to c...[Objective] The aim was to study the internal relationship of the four theories on natural selection unit. [Method] The value field of fitness of heterozygote was investigated by constructing mathematical models, to clarify the internal relations of the four theories on natural selection unit. [Result] According to mathematical modes constructed in the study, only the mutated genes meet the requirements of natural selection on heterozygous and homozygous aspects, as well as show high fitness in heterozygous condition, could the mutated genes be kept, giving consideration to both individual and population adaptation. Thus, this methodology theoretically inte- grates the theories of individual selection, collective selection, and genetic selection as well as Kimura's neutral theory of health information. [Conclusion] The result of this study suggested that the four theories on natural selection unit can co-exist, and share common premises.展开更多
In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular netwo...In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular networks.The problem is formulated as an optimization of maximizing system EE,under the constraints of the data rate requirement and the maximum transmit power.The problem is decomposed into power allocation and alternative scheme selection problems.Optimal power allocation is calculated for CoMP-JT (joint transmission)and CoMP-CS (coordinated scheduling) transmissions,and the scheme with higher EE is chosen. Since the optimal problem is a nonlinear fractional optimization problem for both CoMP transmission schemes, the problem is transformed into an equivalent problem using the parametric method. The optimal transmit power and optimal EE are obtained by an iteration algorithm in CoMP-JT and CoMP-CS schemes.Simulation results show that the proposed algorithm offers obvious energy-saving potential and outperforms the fixed CoMP transmission scheme.Under the condition of the same maximum transmit power limit,the empirical regularity of user distribution for scheme choice is presented, and using this regularity, the computational complexity can be reduced.展开更多
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net...The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.展开更多
基金Outstanding Youth Foundation of Hunan Provincial Department of Education(Grant No.22B0911)。
文摘In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated.
基金The National Natural Science Foundation of China(No50308005), the National Basic Research Program of China (973Program) (No2006CB705500)
文摘In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and the choice behavior utility function is established combining trip time, search time, waiting time, access time and parking fee. By the utility function, a probit-based parking choice behavior model is constructed. On the basis of these, the curb parking pricing model is deduced by considering the constrained conditions, and an incremental assignment algorithm of the model is also designed. Finally, the model is applied to the parking planning of Tongling city. It is pointed out that the average parking time of curb parking decreases 34%, and the average turnover rate increases 67% under the computed parking price system. The results show that the model can optimize the utilization of static traffic facilities.
基金The National Natural Science Foundation of China(No.60472053),the Natural Science Foundation of Jiangsu Province(No.BK2003055),the Specialized Research Fund for the Doctoral Pro-gram of Higher Education (No.20030286017).
文摘The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.
基金supported by the National Science and Technology Major Project (No.2011ZX05023-005-008)
文摘In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
基金The National Natural Science Foundation of China(No60663004)the PhD Programs Foundation of Ministry of Educa-tion of China (No20050007023)
文摘Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.
基金Project (50974033) supported by the National Natural Science Foundation of ChinaProject (N100301002) supported by the Fundamental Research Funds for the Universities, China
文摘A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved.
基金Supported by National Science and Technology Support Plan during the Eleventh Five-year Plan(2006BAD01A08-02)Hubei Agricultural Innovation Program(2007-620-004-003)Special Fund for Modern Pig Production Technology Construction(NYCYTX-009)~~
文摘The combined selection index used in the breeding of new Yorkshire dam line with high prolificacy according to breeding objects was formulated as /:2.272E- BVNB-0.056EBVDAYS. After 5 generations breeding, the two main selected traits such as total number of born and age at 100 kg weight was 12.17 piglets/litter and 165.18 d, respectively. The genetic improvements per generates was 0.156 and -2.198, respec- tively. The breeding objects of the new Yorkshire dam line with high prolificacy were basically reached. It indicated that the methods and index could be used in pig breeding.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金Shanxi Province Science and Technology Research Project(No.20140321008-03)
文摘The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.
基金Supported by the Scientific Research Program of the Education Department of Guangxi Zhuang Autonomous Region of China (200807MS065)the Education Department of Guangxi Zhuang Autonomous Region of China (201106LX743)~~
文摘[Objective] The aim was to study the internal relationship of the four theories on natural selection unit. [Method] The value field of fitness of heterozygote was investigated by constructing mathematical models, to clarify the internal relations of the four theories on natural selection unit. [Result] According to mathematical modes constructed in the study, only the mutated genes meet the requirements of natural selection on heterozygous and homozygous aspects, as well as show high fitness in heterozygous condition, could the mutated genes be kept, giving consideration to both individual and population adaptation. Thus, this methodology theoretically inte- grates the theories of individual selection, collective selection, and genetic selection as well as Kimura's neutral theory of health information. [Conclusion] The result of this study suggested that the four theories on natural selection unit can co-exist, and share common premises.
基金The National Science and Technology Major Project(No.2013ZX03001032-004)the National High Technology Research and Development Program of China(863 Program)(No.2014AA01A702)+1 种基金Jiangsu Province Science and Technology Support Program(No.BE2012165)Foundation of Huawei Corp.Ltd
文摘In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular networks.The problem is formulated as an optimization of maximizing system EE,under the constraints of the data rate requirement and the maximum transmit power.The problem is decomposed into power allocation and alternative scheme selection problems.Optimal power allocation is calculated for CoMP-JT (joint transmission)and CoMP-CS (coordinated scheduling) transmissions,and the scheme with higher EE is chosen. Since the optimal problem is a nonlinear fractional optimization problem for both CoMP transmission schemes, the problem is transformed into an equivalent problem using the parametric method. The optimal transmit power and optimal EE are obtained by an iteration algorithm in CoMP-JT and CoMP-CS schemes.Simulation results show that the proposed algorithm offers obvious energy-saving potential and outperforms the fixed CoMP transmission scheme.Under the condition of the same maximum transmit power limit,the empirical regularity of user distribution for scheme choice is presented, and using this regularity, the computational complexity can be reduced.
文摘The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.