AFLP analysis was performed between a pair of thermo_sensitive genic male sterile (TGMS) rice allelic mutant lines (5460S and 5460F). The reaction conditions for rice AFLP assay were optimized. The relative efficienci...AFLP analysis was performed between a pair of thermo_sensitive genic male sterile (TGMS) rice allelic mutant lines (5460S and 5460F). The reaction conditions for rice AFLP assay were optimized. The relative efficiencies for polymorphism detection of RFLP, RAPD and AFLP were compared. The results indicated that the efficiency for polymorphism detection in rice was in the order of AFLP>RAPD>RFLP, and also indicated that AFLP was a powerful DNA molecular marker technique for polymorphism detection, especially in the case of extremely low polymorphism, such as isogenic lines and allelic mutant lines. Some of the AFLP products between the TGMS rice allelic mutant lines were cloned. Three of them were used as mixed probes to screen BAC library of rice line 5460S. 12 positive clones were screened out. In addition, the advantages and disadvantages of these three molecular marker systems were discussed.展开更多
A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactiva...A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.展开更多
RPMI-1640 was used as the basic culture medium and 30% calf serum was added. Using Berenil, tetracycline,dipterex,tiamulin,imidocarb,florfenicol,ethacri-dine,primaquine phosphate and other drug powder,the drug screeni...RPMI-1640 was used as the basic culture medium and 30% calf serum was added. Using Berenil, tetracycline,dipterex,tiamulin,imidocarb,florfenicol,ethacri-dine,primaquine phosphate and other drug powder,the drug screening experiment in vitro of Mycoplasma wenyoni was made under the conditions of 37 ℃, 5% CO2. The results showed that the effects of ethacridine was the best ,and that of dipterex and primaquine phosphate were next. The toxicity of dipterex was greater. Berenil, imidocarb and florfenicol were efficient.展开更多
A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized ...A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts.展开更多
To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of...To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.展开更多
According to the heating effect caused by interaction between matters,a series of experiments on the interaction between drugs and cells from human bodies,DNA and physiological saline have been carried out with a MS-8...According to the heating effect caused by interaction between matters,a series of experiments on the interaction between drugs and cells from human bodies,DNA and physiological saline have been carried out with a MS-80 standard Calvet microcalorimeter.The experiments include: (1) Thermokinetic studies of the effect of anticancer drugs [sodium norcantharidate (ASN),the bioac- tire materials (Sp.P and Sp.S) from algae etc.]on the cancer cells [Hela,human breast carcinoma (Bcap-37),human adenocarcinoma gastric cells (SGc-7901 and MCF-7) etc.] and the normal cells from human bodies [diploid fibroblasts from human fetal lung (2BS) etc.] at 310.15 K:(2) Studies of the in- tercalation binding of some alkaloidal drugs with the bioactivity to inhibit monoamine oxidase (harmalinc and harmine etc.) to call thymus DNA in neutral aqueous solution at 298.15 K:(3) Studies of the interaction between long acting drugs (long acting oral contraceptive-norgestrel etc.) and slow- releasing drug (Contac) and aqueous solution of 0.9% NaCI at 310.15 K.All the experimental results have given their characteristic thermograms and the interaction enthalpy changes.On the analysis of all the results,the authors put forward a method on application of microcalorimetric technique for screen- ing and examination of medicines.The principle of application and the experimental operation of this method have been expounded,and some results of the above experiments have been discussed.As one of the methods for screening and examining medicines,the microcalorimctric method has some distin- guished features and advantages over other methods.展开更多
Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were charact...Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were characterized by Brunauer‐Emmett‐Teller(BET),X‐ray diffraction(XRD),temperature‐programmed reduction(H2‐TPR),temperature‐programmed desorption of NH3(NH3‐TPD),X‐ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The catalytic activities were tested on a fixed bed.Their results indicated that the proper doping amount of Ho could effectively improve the low‐temperature denitrification performance and the SO2 resistance of Mn–Ce/TiO2 catalyst.The catalyst with Ho/Ti of 0.1 presented excellent catalytic activity,with a conversion of more than 90%in the temperature window of 140–220°C.The characterization results showed that the improved SCR activity of the Mn–Ce/TiO2 catalyst caused by Ho doping was due to the increase of the specific surface area,higher concentration of chemisorbed oxygen,higher surface Mn4+/Mn3+ratio,and higher acidity.The SO2 resistance test showed that the deactivating influence of SO2 on the catalyst was irreversible.The XRD and XPS results showed that the main reason for the catalyst deactivation was sulfates that had formed on the catalyst surface and that Ho doping could inhibit the sulfation to some extent.展开更多
In this study,a MnOx@TiO2 core‐shell catalyst prepared by a two‐step method was used for the low‐temperature selective catalytic reduction of NOx with NH3.The catalyst exhibits high activity,high stability,and exce...In this study,a MnOx@TiO2 core‐shell catalyst prepared by a two‐step method was used for the low‐temperature selective catalytic reduction of NOx with NH3.The catalyst exhibits high activity,high stability,and excellent N2 selectivity.Furthermore,it displays better SO2 and H2O tolerance than its MnOx,TiO2,and MnOx/TiO2 counterparts.The prepared catalyst was characterized systematically by transmission electron microscopy,high‐resolution transmission electron microscopy,X‐ray diffraction,Raman,BET,X‐ray photoelectron spectroscopy,NH3 temperature‐programmed desorption and H2 temperature‐programmed reduction analyses.The optimized MnOx@TiO2 catalyst exhibits an obvious core‐shell structure,where the TiO2 shell is evenly distributed over the MnOx nanorod core.The catalyst also presents abundant mesopores,Lewis‐acid sites,and high redox capability,all of which enhance its catalytic performance.According to the XPS results,the decrease in the number of Mn4+active centers after SO2 poisoning is significantly lower in MnOx@TiO2 than in MnOx/TiO2.The core‐shell structure is hence able to protect the catalytic active sites from H2O and SO2 poisoning.展开更多
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ...The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.展开更多
In order to improve the scheelite flotation with sodium oleate(NaOL),the effect of a non-ionic polyoxyethylene ether(JFC-5)on the floatability of scheelite was investigated through flotation experiments at10°C,co...In order to improve the scheelite flotation with sodium oleate(NaOL),the effect of a non-ionic polyoxyethylene ether(JFC-5)on the floatability of scheelite was investigated through flotation experiments at10°C,compared with60mg/L NaOL alone,the recovery of scheelite is improved from22%to85%in the presence of JFC-5with a mass ratio of20%at pH10.Moreover,the resistance to Ca2+of NaOL is increased.The adsorption mechanism was analyzed by zeta potential measurement,contact angle measurement and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the adsorption of NaOL on scheelite surface is enhanced after adding JFC-5due to the more negative zeta potentials and larger contact angles of scheelite.And the co-adsorption of NaOL and JFC-5is confirmed by XPS analysis,so it is indicated that the adsorption of JFC-5decreases the electrostatic repulsion between the oleate ions,resulting in the stronger adsorption of NaOL on scheelite surface.In short,the mixed NaOL/JFC-5collector can effectively improve scheelite flotation.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
The specific results of the work investigating the effect of gas density and water temperature on bubble size were present.These were surrogate variables designed to investigate the effect of viscosity(varying water t...The specific results of the work investigating the effect of gas density and water temperature on bubble size were present.These were surrogate variables designed to investigate the effect of viscosity(varying water temperature) and altitude(varying gas density).The results show that there is a measurable but relatively small effect of gas density on bubble size.The D32 is revealed to increase proportionally as(ρ0/ρg)0.132.The projected impact on flotation kinetics at 4500 m versus sea level is small,of the order of 0.5% recovery loss for a bank of eight flotation cells.The effect of water temperature(4-40 °C) on bubble size is more significant than gas density.The relationship correlates with water viscosity values quite closely.A finding that D32 increases proportionally as(μ/μ20)0.776 highlights the importance of accounting for viscosity effects if,for example,large process temperature fluctuations or deviation from design/test conditions are expected.展开更多
An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance ...An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance to H2O and SO2of Fe/TiO2prepared by a template method were better than those of catalysts synthesized using impregnation and coprecipitation.The samples were characterized using N2‐physisorption,transmission electron microscopy,ultraviolet‐visibl spectroscopy,X‐ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fouriertransform spectroscopy.The results showed that Pluronic F127acted as a structural and chemical promoter;it not only promoted the formation of a uniform mesoporous structure,leading to a higher surface area,but also improved dispersion of the active phase.In addition,the larger number of Lewis acidic sites,indicated by the presence of coordinated NH3species(1188cm-1)and the N–H stretching modes of coordinated NH3(3242and3388cm-1),were beneficial to mid‐temperature selective catalytic reduction reactions.展开更多
A novel method for pest detection is proposed based on the theory of multi-fractal spectrum to extract pests on plant leaves.Both local and global information of the image regularity were obtained by multi-fractal ana...A novel method for pest detection is proposed based on the theory of multi-fractal spectrum to extract pests on plant leaves.Both local and global information of the image regularity were obtained by multi-fractal analysis.By applying fractal dimension,the spots on leaf images can be extracted without loosing or introducing any information.The different parts of images are re-analysis by morphology operations to determine the candidate regions of pests.The performance of multi-fractal analysis of whitefly detection is investigated through greenhouse experiments.The experimental results show that the proposed method is robust to noise from light and is not sensitive to the complex environment.展开更多
Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduct...Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduction(SCR)of NO by NH3across a low reaction temperature window of50–350°C.In this study,the catalysts were characterized using N2adsorption/desorption,X‐ray diffraction,X‐ray fluorescence,H2temperature‐programmed reduction,NH3temperature‐programmed desorption and X‐ray photoelectron spectroscopy.As the manganese chloride precursor only partially decomposed this primarily resulted in the formation of MnCl2in addition to the presence of low levels of crystalline Mn3O4,which resulted in poor catalytic performance.However,the manganese nitrate precursor formed crystalline MnO2as the major phase in addition to a minor presence of unconverted Mn‐nitrate.Furthermore,manganese acetate resulted principally in a mixture of amorphous Mn2O3and MnO2,and crystalline Mn3O4.From all the catalysts screened,the test performance data showed Mn/beta‐Ac to exhibit the highest NO conversion(97.5%)at240°C,which remained>90%across a temperature window of220–350°C.The excellent catalytic performance was ascribed to the enrichment of highly dispersed MnOx(Mn2O3and MnO2)species that act as the active phase in the NH3‐SCR process.Furthermore,together with a suitable amount of weakly acidic centers,higher concentration of surface manganese and a greater presence of surface labile oxygen groups,SCR performance was collectively enhanced at low temperature.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduc...Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduce the sintering temperature of porous ceramics and kaolin was used to realize the adsorption to methylene blue(MB)of porous ceramics.The average flexural strength,compressive strength,apparent porosity,water absorption and maximum MB adsorption capacity were 5.60 MPa,4.66 MPa,52.27%,44.32%and 0.7 mg/g,respectively.Moreover,the results of orthogonal experiments present that the sintering temperature and the dosage of H_(2)O_(2)had great influence on the mechanical properties and apparent porosity of porous ceramics,respectively.The main reason for the improvement of mechanical properties of porous ceramics was that LPG gradually became soft with increasing the sintering temperature,which made the mineral particles adhere to each other closely.Kaolinite was not completely converted into metakaolin at 550℃,which might be the main reason why porous ceramics had adsorption properties.展开更多
Citrus sinensis commonly called sweet orange belongs to the family Rutaceae. Nutritionally, it is highly recommended due to its high content of micronutrients. However, the rejection of a large amount of epicarp in na...Citrus sinensis commonly called sweet orange belongs to the family Rutaceae. Nutritionally, it is highly recommended due to its high content of micronutrients. However, the rejection of a large amount of epicarp in nature contributes to the emission of greenhouse gas and the development of leachate which contaminate surface water and groundwater. The aim of this work was to identify the essential oil components from Citrus sinensis epicarp, and then look after the biological activity of these components in order to underline the worth to reuse the Citrus sinensis epicarp as a gainful mean. The essential oil of 4,000 g of Citrus sinensis epicarp was done through the water steam distillation and 0.0287 g of essential oil was obtained; so a yield of 0.0007%. The essential oil was then submitted to gas chromatography-flame ionization detector (GC-F1D). The result revealed that the essential oil was teemed with 28 volatile compounds, including terpene compounds (50%), aldehydes (32%) and alcohols (18%) whose anti-inflammatory, anti-diabetic, larvicidal and antioxidant activities were underlined.展开更多
The sedimentary phosphate deposit of Bayovar is located in a very dry area of Peru (desert of Sechura) which is close to the Pacific coast. It consists of seven superposed layers (beds) which call for different st...The sedimentary phosphate deposit of Bayovar is located in a very dry area of Peru (desert of Sechura) which is close to the Pacific coast. It consists of seven superposed layers (beds) which call for different strategy of concentration. The ore is composed predominantly by apatite (84% in weight basis) plus silicates (16%). To concentrate phosphate from beds 6-7, it is necessary to carry out further cationic reverse flotation of silicates, at neutral pH, to yield a concentrate which meets market specification. The new process was developed in laboratory scale by a collaborative program conducted between Vale S. A. and the University of Sao Paulo--Brazil. As water resources are very limited at Bayovar region, all the steps of concentration, including flotation, must be performed with seawater which must be continuously recycled. This work addresses some relevant topics related to the use of seawater in the reverse cationic flotation of silicates: influence of temperature, water quality (ageing and chemical composition) and collector type. The results indicate that amido amine works better than ether amine. If flotation is conducted with the former collector, the separation process is able to tolerate changes in temperature (25 ℃-40 ℃) and water quality caused by either evaporation or ageing.展开更多
文摘AFLP analysis was performed between a pair of thermo_sensitive genic male sterile (TGMS) rice allelic mutant lines (5460S and 5460F). The reaction conditions for rice AFLP assay were optimized. The relative efficiencies for polymorphism detection of RFLP, RAPD and AFLP were compared. The results indicated that the efficiency for polymorphism detection in rice was in the order of AFLP>RAPD>RFLP, and also indicated that AFLP was a powerful DNA molecular marker technique for polymorphism detection, especially in the case of extremely low polymorphism, such as isogenic lines and allelic mutant lines. Some of the AFLP products between the TGMS rice allelic mutant lines were cloned. Three of them were used as mixed probes to screen BAC library of rice line 5460S. 12 positive clones were screened out. In addition, the advantages and disadvantages of these three molecular marker systems were discussed.
基金supported by the National High Technology Research and Development Program of China (863 Program,2015AA03A401)the National Natural Science Foundation of China (51276039)+1 种基金the Fundamental Research Funds for the Central Universities (020514380020,020514380030)the Postdoctoral Science Foundation of Jiangsu Province,China (1501033A)~~
文摘A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.
基金Supported by Spark Program of Ministry of Science and Technology(2012GA6200025)Science and Technology Development Plan Program in Shijiazhuang City(08150132A-3)Program of Qinhuangdao Science and Technology Bureau(200901A070)~~
文摘RPMI-1640 was used as the basic culture medium and 30% calf serum was added. Using Berenil, tetracycline,dipterex,tiamulin,imidocarb,florfenicol,ethacri-dine,primaquine phosphate and other drug powder,the drug screening experiment in vitro of Mycoplasma wenyoni was made under the conditions of 37 ℃, 5% CO2. The results showed that the effects of ethacridine was the best ,and that of dipterex and primaquine phosphate were next. The toxicity of dipterex was greater. Berenil, imidocarb and florfenicol were efficient.
基金supported by the National Natural Science Foundation of China(2137626121173270)+4 种基金the National High Technology Research and Development Program of China(863 Program2015AA034603)the Beijing Natural Science Foundation(2142027)the China University of Petroleum Fund(201300071100072462015QZDX04)~~
文摘A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts.
基金Project (51074105) supported by the National Natural Science Foundation of ChinaProjects (08DZ1130100, 10520706400) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2007CB613606) supported by the National Basic Research Program of China
文摘To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.
文摘According to the heating effect caused by interaction between matters,a series of experiments on the interaction between drugs and cells from human bodies,DNA and physiological saline have been carried out with a MS-80 standard Calvet microcalorimeter.The experiments include: (1) Thermokinetic studies of the effect of anticancer drugs [sodium norcantharidate (ASN),the bioac- tire materials (Sp.P and Sp.S) from algae etc.]on the cancer cells [Hela,human breast carcinoma (Bcap-37),human adenocarcinoma gastric cells (SGc-7901 and MCF-7) etc.] and the normal cells from human bodies [diploid fibroblasts from human fetal lung (2BS) etc.] at 310.15 K:(2) Studies of the in- tercalation binding of some alkaloidal drugs with the bioactivity to inhibit monoamine oxidase (harmalinc and harmine etc.) to call thymus DNA in neutral aqueous solution at 298.15 K:(3) Studies of the interaction between long acting drugs (long acting oral contraceptive-norgestrel etc.) and slow- releasing drug (Contac) and aqueous solution of 0.9% NaCI at 310.15 K.All the experimental results have given their characteristic thermograms and the interaction enthalpy changes.On the analysis of all the results,the authors put forward a method on application of microcalorimetric technique for screen- ing and examination of medicines.The principle of application and the experimental operation of this method have been expounded,and some results of the above experiments have been discussed.As one of the methods for screening and examining medicines,the microcalorimctric method has some distin- guished features and advantages over other methods.
文摘Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were characterized by Brunauer‐Emmett‐Teller(BET),X‐ray diffraction(XRD),temperature‐programmed reduction(H2‐TPR),temperature‐programmed desorption of NH3(NH3‐TPD),X‐ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The catalytic activities were tested on a fixed bed.Their results indicated that the proper doping amount of Ho could effectively improve the low‐temperature denitrification performance and the SO2 resistance of Mn–Ce/TiO2 catalyst.The catalyst with Ho/Ti of 0.1 presented excellent catalytic activity,with a conversion of more than 90%in the temperature window of 140–220°C.The characterization results showed that the improved SCR activity of the Mn–Ce/TiO2 catalyst caused by Ho doping was due to the increase of the specific surface area,higher concentration of chemisorbed oxygen,higher surface Mn4+/Mn3+ratio,and higher acidity.The SO2 resistance test showed that the deactivating influence of SO2 on the catalyst was irreversible.The XRD and XPS results showed that the main reason for the catalyst deactivation was sulfates that had formed on the catalyst surface and that Ho doping could inhibit the sulfation to some extent.
文摘In this study,a MnOx@TiO2 core‐shell catalyst prepared by a two‐step method was used for the low‐temperature selective catalytic reduction of NOx with NH3.The catalyst exhibits high activity,high stability,and excellent N2 selectivity.Furthermore,it displays better SO2 and H2O tolerance than its MnOx,TiO2,and MnOx/TiO2 counterparts.The prepared catalyst was characterized systematically by transmission electron microscopy,high‐resolution transmission electron microscopy,X‐ray diffraction,Raman,BET,X‐ray photoelectron spectroscopy,NH3 temperature‐programmed desorption and H2 temperature‐programmed reduction analyses.The optimized MnOx@TiO2 catalyst exhibits an obvious core‐shell structure,where the TiO2 shell is evenly distributed over the MnOx nanorod core.The catalyst also presents abundant mesopores,Lewis‐acid sites,and high redox capability,all of which enhance its catalytic performance.According to the XPS results,the decrease in the number of Mn4+active centers after SO2 poisoning is significantly lower in MnOx@TiO2 than in MnOx/TiO2.The core‐shell structure is hence able to protect the catalytic active sites from H2O and SO2 poisoning.
基金supported by the National Basic Research Program of China(973 Program,2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.
基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources)China
文摘In order to improve the scheelite flotation with sodium oleate(NaOL),the effect of a non-ionic polyoxyethylene ether(JFC-5)on the floatability of scheelite was investigated through flotation experiments at10°C,compared with60mg/L NaOL alone,the recovery of scheelite is improved from22%to85%in the presence of JFC-5with a mass ratio of20%at pH10.Moreover,the resistance to Ca2+of NaOL is increased.The adsorption mechanism was analyzed by zeta potential measurement,contact angle measurement and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the adsorption of NaOL on scheelite surface is enhanced after adding JFC-5due to the more negative zeta potentials and larger contact angles of scheelite.And the co-adsorption of NaOL and JFC-5is confirmed by XPS analysis,so it is indicated that the adsorption of JFC-5decreases the electrostatic repulsion between the oleate ions,resulting in the stronger adsorption of NaOL on scheelite surface.In short,the mixed NaOL/JFC-5collector can effectively improve scheelite flotation.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
基金Project supported by the Collaborative Research and Development Program of NSERC(Natural Sciences and Engineering Research Council of Canada)with Industrial Sponsorship from Vale,Teck Cominco,Xstrata Process Support,Agnico-Eagle,Shell Canada,Barrick Gold,COREM,SGS Lakefield Research and Flottec
文摘The specific results of the work investigating the effect of gas density and water temperature on bubble size were present.These were surrogate variables designed to investigate the effect of viscosity(varying water temperature) and altitude(varying gas density).The results show that there is a measurable but relatively small effect of gas density on bubble size.The D32 is revealed to increase proportionally as(ρ0/ρg)0.132.The projected impact on flotation kinetics at 4500 m versus sea level is small,of the order of 0.5% recovery loss for a bank of eight flotation cells.The effect of water temperature(4-40 °C) on bubble size is more significant than gas density.The relationship correlates with water viscosity values quite closely.A finding that D32 increases proportionally as(μ/μ20)0.776 highlights the importance of accounting for viscosity effects if,for example,large process temperature fluctuations or deviation from design/test conditions are expected.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07030300)~~
文摘An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance to H2O and SO2of Fe/TiO2prepared by a template method were better than those of catalysts synthesized using impregnation and coprecipitation.The samples were characterized using N2‐physisorption,transmission electron microscopy,ultraviolet‐visibl spectroscopy,X‐ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fouriertransform spectroscopy.The results showed that Pluronic F127acted as a structural and chemical promoter;it not only promoted the formation of a uniform mesoporous structure,leading to a higher surface area,but also improved dispersion of the active phase.In addition,the larger number of Lewis acidic sites,indicated by the presence of coordinated NH3species(1188cm-1)and the N–H stretching modes of coordinated NH3(3242and3388cm-1),were beneficial to mid‐temperature selective catalytic reduction reactions.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mationTechnology Research Center)support programsupervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2010-C1090-1021-0010)
文摘A novel method for pest detection is proposed based on the theory of multi-fractal spectrum to extract pests on plant leaves.Both local and global information of the image regularity were obtained by multi-fractal analysis.By applying fractal dimension,the spots on leaf images can be extracted without loosing or introducing any information.The different parts of images are re-analysis by morphology operations to determine the candidate regions of pests.The performance of multi-fractal analysis of whitefly detection is investigated through greenhouse experiments.The experimental results show that the proposed method is robust to noise from light and is not sensitive to the complex environment.
基金supported by the National Science and Technology Program of China(CDGC01-KT16)~~
文摘Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduction(SCR)of NO by NH3across a low reaction temperature window of50–350°C.In this study,the catalysts were characterized using N2adsorption/desorption,X‐ray diffraction,X‐ray fluorescence,H2temperature‐programmed reduction,NH3temperature‐programmed desorption and X‐ray photoelectron spectroscopy.As the manganese chloride precursor only partially decomposed this primarily resulted in the formation of MnCl2in addition to the presence of low levels of crystalline Mn3O4,which resulted in poor catalytic performance.However,the manganese nitrate precursor formed crystalline MnO2as the major phase in addition to a minor presence of unconverted Mn‐nitrate.Furthermore,manganese acetate resulted principally in a mixture of amorphous Mn2O3and MnO2,and crystalline Mn3O4.From all the catalysts screened,the test performance data showed Mn/beta‐Ac to exhibit the highest NO conversion(97.5%)at240°C,which remained>90%across a temperature window of220–350°C.The excellent catalytic performance was ascribed to the enrichment of highly dispersed MnOx(Mn2O3and MnO2)species that act as the active phase in the NH3‐SCR process.Furthermore,together with a suitable amount of weakly acidic centers,higher concentration of surface manganese and a greater presence of surface labile oxygen groups,SCR performance was collectively enhanced at low temperature.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51674207,51922091)the Young Elite Scientists Sponsorship Program by CAST,China(No.2018QNRC001)the Sichuan Science and Technology Program,China(Nos.2019YFS0453,2018JY0148).
文摘Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduce the sintering temperature of porous ceramics and kaolin was used to realize the adsorption to methylene blue(MB)of porous ceramics.The average flexural strength,compressive strength,apparent porosity,water absorption and maximum MB adsorption capacity were 5.60 MPa,4.66 MPa,52.27%,44.32%and 0.7 mg/g,respectively.Moreover,the results of orthogonal experiments present that the sintering temperature and the dosage of H_(2)O_(2)had great influence on the mechanical properties and apparent porosity of porous ceramics,respectively.The main reason for the improvement of mechanical properties of porous ceramics was that LPG gradually became soft with increasing the sintering temperature,which made the mineral particles adhere to each other closely.Kaolinite was not completely converted into metakaolin at 550℃,which might be the main reason why porous ceramics had adsorption properties.
文摘Citrus sinensis commonly called sweet orange belongs to the family Rutaceae. Nutritionally, it is highly recommended due to its high content of micronutrients. However, the rejection of a large amount of epicarp in nature contributes to the emission of greenhouse gas and the development of leachate which contaminate surface water and groundwater. The aim of this work was to identify the essential oil components from Citrus sinensis epicarp, and then look after the biological activity of these components in order to underline the worth to reuse the Citrus sinensis epicarp as a gainful mean. The essential oil of 4,000 g of Citrus sinensis epicarp was done through the water steam distillation and 0.0287 g of essential oil was obtained; so a yield of 0.0007%. The essential oil was then submitted to gas chromatography-flame ionization detector (GC-F1D). The result revealed that the essential oil was teemed with 28 volatile compounds, including terpene compounds (50%), aldehydes (32%) and alcohols (18%) whose anti-inflammatory, anti-diabetic, larvicidal and antioxidant activities were underlined.
文摘The sedimentary phosphate deposit of Bayovar is located in a very dry area of Peru (desert of Sechura) which is close to the Pacific coast. It consists of seven superposed layers (beds) which call for different strategy of concentration. The ore is composed predominantly by apatite (84% in weight basis) plus silicates (16%). To concentrate phosphate from beds 6-7, it is necessary to carry out further cationic reverse flotation of silicates, at neutral pH, to yield a concentrate which meets market specification. The new process was developed in laboratory scale by a collaborative program conducted between Vale S. A. and the University of Sao Paulo--Brazil. As water resources are very limited at Bayovar region, all the steps of concentration, including flotation, must be performed with seawater which must be continuously recycled. This work addresses some relevant topics related to the use of seawater in the reverse cationic flotation of silicates: influence of temperature, water quality (ageing and chemical composition) and collector type. The results indicate that amido amine works better than ether amine. If flotation is conducted with the former collector, the separation process is able to tolerate changes in temperature (25 ℃-40 ℃) and water quality caused by either evaporation or ageing.