The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neu...The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.展开更多
The sedimentation behaviors of bauxite flotation concentrates were investigated at different pH values and floceulant dosages. The effects of three types of flocculants ( cationic, anionic and non-ionic polyacrylamid...The sedimentation behaviors of bauxite flotation concentrates were investigated at different pH values and floceulant dosages. The effects of three types of flocculants ( cationic, anionic and non-ionic polyacrylamide floceulants) as well as the molecular weight of anionic flocculants on the sedimentation of concentrate were studied. It is shown from the experimental results that at the pH 7.0, best sedimentation capability is reached when anionic polyacrylamide flocculant (molecular weight 14 million) is added and the optimal dosage is 30 g/t.展开更多
Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber ...Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber industries. The limestone sample was crystalline and constituted primarily of calcite that contained quartz, feldspar, pyroxene, and biotite as gangue minerals. Quartz is the major silicate gangue whereas feldspar, pyroxene, and biotite exist in minor to trace quantities. Traces of pyrite were also observed within the sample. A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors: Chem-750 F or Floatamine-D. The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % Si02. The effect of feed flow rate, percent solids, froth depth, and wash water on the grade and recovery of the CaC03 concentrate is discussed.展开更多
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.
基金Project(2006DFB72570) supported by the Grand Project of International Cooperation of Ministry of Science and Technology of China
文摘The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.
基金supported by a grant from the National Key Fundamental Research and Development Program (2005cb6237601)
文摘The sedimentation behaviors of bauxite flotation concentrates were investigated at different pH values and floceulant dosages. The effects of three types of flocculants ( cationic, anionic and non-ionic polyacrylamide floceulants) as well as the molecular weight of anionic flocculants on the sedimentation of concentrate were studied. It is shown from the experimental results that at the pH 7.0, best sedimentation capability is reached when anionic polyacrylamide flocculant (molecular weight 14 million) is added and the optimal dosage is 30 g/t.
文摘Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber industries. The limestone sample was crystalline and constituted primarily of calcite that contained quartz, feldspar, pyroxene, and biotite as gangue minerals. Quartz is the major silicate gangue whereas feldspar, pyroxene, and biotite exist in minor to trace quantities. Traces of pyrite were also observed within the sample. A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors: Chem-750 F or Floatamine-D. The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % Si02. The effect of feed flow rate, percent solids, froth depth, and wash water on the grade and recovery of the CaC03 concentrate is discussed.