Pre-concentration of vanadium from low-grade stone coal by the method of desliming-flotation was investigated. The mineral composition and microstructure of stone coal were studied systematically by means of X-ray flu...Pre-concentration of vanadium from low-grade stone coal by the method of desliming-flotation was investigated. The mineral composition and microstructure of stone coal were studied systematically by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that selective separation of vanadium-bearing minerals can be achieved by flotation in acidic solution using melamine (EA). The final vanadium concentrate with V2O5 grade of 1.88% and recovery rate of 76.58% is obtained by desliming-flotation process and 72.51% of the raw ore is rejected as tailings. The pre-concentration of vanadium from low-grade stone coal can increase V2O5 grade and decrease the content of acid consuming minerals, which would enable economical utilization of metallurgical vanadium extraction technology.展开更多
Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mine...Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mineral concentrates. Carbon and vanadium minerals were efficiently separated via regrinding process in the carbon flotation circuit. The results show that the grade and recovery of V2O5 in flotation concentrate are 1.32% and 88.38%, respectively, and the tailings yield is 38.36%. Meanwhile, the grade and recovery of the carbon mineral are 30.08% and 75.10%, respectively, which may be utilized as the fossil fuels directly. The leaching rates of the flotation products are as high as 85%. The results demonstrate that there is no direct adverse effect of flotation process on vanadium leaching. This technology could potentially reduce cost and increase the treatment capacity of vanadium extraction and provide reference to stone coal flotation technology.展开更多
Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in t...Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.展开更多
The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The ef...The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.展开更多
Oxygen-poor vanadium oxide clusters, V2On+ (n=l, 2), V3On+ (n=l, 2, 3), and V4O3+, were produced by laser vaporization and were mass-selected and photodissociated with 532 and 266 nm photons. The geometric stru...Oxygen-poor vanadium oxide clusters, V2On+ (n=l, 2), V3On+ (n=l, 2, 3), and V4O3+, were produced by laser vaporization and were mass-selected and photodissociated with 532 and 266 nm photons. The geometric structures and possible dissociation channels of these clusters were determined based on the comparison of density functional calculations and pho- todissociation experiments. The experiments show that the dissociation of V2O+, V2O2+, and V3O3+ mainly occurs by loss of VO, while the dissociation of V3O+ and V4O3+ mainly occurs by loss of V atom. For the dissociation of V3O2+, the VO loss channel is slightly dominant compared to the V loss channel. The combination of experimental results and theoretical calculations suggests that the V loss channels of V3O+ and V4O3+ are single photon processes at both 532 and 266 nm. The VO loss channels of V2O2+ and V3O3+ are multiple-photon processes at both 532 and 266 nm.展开更多
To recycle vanadium and chromium from the V?Cr-bearing reducing slag,the thermodynamics of separating V(IV)and Cr(III)at 298 K was summarized in the form of potential-pH diagram and activity-pH diagram.The potential-p...To recycle vanadium and chromium from the V?Cr-bearing reducing slag,the thermodynamics of separating V(IV)and Cr(III)at 298 K was summarized in the form of potential-pH diagram and activity-pH diagram.The potential-pH diagrams of V-Mn-H2O and Cr-Mn-H2O systems show that the electrode potential of MnO2/Mn2+is higher than that of VO2+/VO2+but lower than that of Cr2O7 2-/Cr3+,which proves that it is feasible to selectively oxidize low valent vanadium using MnO2.The activity-pH diagrams of V(V)-H2O and Cr(III)-H2O systems show that the precipitation pH of V(V)is far lower than that of Cr(III),and therefore V(V)and Cr(III)can be separated through precipitation method.Based on the thermodynamic analysis,the flowsheet of recovery of vanadium and chromium from the V-Cr-bearing reducing slag is designed.展开更多
The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response tec...The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response technique. The reaction intermediates, buterie and furan, were found in the reaction effluent under near industrial feed condition (3% butane+15%O2), while dihydrofuran was detected at high butane concentration (12% butane, 5%O2). Some intermediates of MA decomposition were also identified. Detection of these intermediates shows that the vanadium phosphorus oxides are able to dehydrogenate butane to butene, and butene further to form MA. Based on these observations, a modified scheme of reaction network is proposed. The transient experiments show that butane in the gas phase may directly react with oxygen both on the surface and from the metal oxide lattice, without a proceeding adsorption step. Gas phase oxygen can be adsorbed and transformed to surface lattice oxygen but it can not participate in selective oxidation. Adsorbed oxygen leads to deep oxidation, while lattice oxygen leads to selective oxidation.展开更多
Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins...Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.展开更多
Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experim...Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experiments. Some fundamental experiments for extracting vanadium by FeClx as chlorinating agent were conducted over the temperature range of 900-1300 K under air or oxygen atmosphere. The results show that vanadium can be extracted by the selective chlorination, using FeClx, based on thermodynamic analysis and experiment. Vanadium extraction ratio first increases with the increase of temperature, and then decreases with the increase of temperature over the range of 900-1300 K under air or oxygen atmosphere. The higher molar ratio of FeCI3 to oxides (nchl:noxd) reacting with FeC13, the higher ratio of vanadium extraction. Under oxygen atmosphere, the vanadium extraction ratio is up to 32% at 1100 K for 2 h by using FeCI3 as chlorinating agent.展开更多
Uranium extraction from seawater is of strategic significance for nuclear power generation.Amidoximebased functional adsorbents play indispensable roles in the recovery of seawater uranium with high efficiency.Neverth...Uranium extraction from seawater is of strategic significance for nuclear power generation.Amidoximebased functional adsorbents play indispensable roles in the recovery of seawater uranium with high efficiency.Nevertheless,balancing the adsorption capacity and selectivity is challenging in the presence of complicated interfering ions especially vanadium.Herein,a polyarylether-based covalent organic framework functionalized with open-chain amidoxime(COF-HHTF-AO)was synthesized with remarkable chemical stability and excellent crystallinity.Impressively,the adsorption capacity of COF-HHTF-AO towards uranium in natural seawater reached up to 5.12 mg/g,which is 1.61 times higher than that for vanadium.Detailed computational calculations revealed that the higher selectivity for uranium over vanadium originated from the specific bonding nature and coordination pattern with amidoxime.Combining enhanced adsorption capacity,excellent selectivity and ultrahigh stability,COF-HHTF-AO serves as a promising adsorbent for uranium extraction from the natural seawater.展开更多
基金Project (2012BAB07B05) supported by the National Technology Support Project of ChinaProject (2013zzts066) supported by Independent Innovation Foundation of Central South University,China
文摘Pre-concentration of vanadium from low-grade stone coal by the method of desliming-flotation was investigated. The mineral composition and microstructure of stone coal were studied systematically by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that selective separation of vanadium-bearing minerals can be achieved by flotation in acidic solution using melamine (EA). The final vanadium concentrate with V2O5 grade of 1.88% and recovery rate of 76.58% is obtained by desliming-flotation process and 72.51% of the raw ore is rejected as tailings. The pre-concentration of vanadium from low-grade stone coal can increase V2O5 grade and decrease the content of acid consuming minerals, which would enable economical utilization of metallurgical vanadium extraction technology.
基金Project(2012BAB07B05)supported by the National Science&Technology Support Program during"Twelfth Five-Year"Plan Period
文摘Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mineral concentrates. Carbon and vanadium minerals were efficiently separated via regrinding process in the carbon flotation circuit. The results show that the grade and recovery of V2O5 in flotation concentrate are 1.32% and 88.38%, respectively, and the tailings yield is 38.36%. Meanwhile, the grade and recovery of the carbon mineral are 30.08% and 75.10%, respectively, which may be utilized as the fossil fuels directly. The leaching rates of the flotation products are as high as 85%. The results demonstrate that there is no direct adverse effect of flotation process on vanadium leaching. This technology could potentially reduce cost and increase the treatment capacity of vanadium extraction and provide reference to stone coal flotation technology.
基金supported by the National Natural Science Foundation of China (21303099)the National Basic Research Program of China(973 Program,2014CB660803)+1 种基金the Shanghai Municipal Education Commission(14ZZ097, B.3704713001)the Research Fund for Innovation Program of Shanghai University (K.10040713003)~~
文摘Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.
基金Projects(2013CB632601,2013CB632604)supported by the National Basic Research Program of ChinaProject(51125018)supported by the National Science Foundation for Distinguished Young Scholars of China+1 种基金Project(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,21106167,51104139)supported by the National Natural Science Foundation of China
文摘The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.
基金This work was supported by the National Natural Science Foundation of China (No.20933008). The theoretical calculations were conducted on the ScGrid and Deepcomp7000 of the Supercomputing Center, Com- puter Network Information Center of Chinese Academy of Sciences. We thank Dr. Xun-lei Ding and Dr. Yan-xia Zhao for valuable discussion.
文摘Oxygen-poor vanadium oxide clusters, V2On+ (n=l, 2), V3On+ (n=l, 2, 3), and V4O3+, were produced by laser vaporization and were mass-selected and photodissociated with 532 and 266 nm photons. The geometric structures and possible dissociation channels of these clusters were determined based on the comparison of density functional calculations and pho- todissociation experiments. The experiments show that the dissociation of V2O+, V2O2+, and V3O3+ mainly occurs by loss of VO, while the dissociation of V3O+ and V4O3+ mainly occurs by loss of V atom. For the dissociation of V3O2+, the VO loss channel is slightly dominant compared to the V loss channel. The combination of experimental results and theoretical calculations suggests that the V loss channels of V3O+ and V4O3+ are single photon processes at both 532 and 266 nm. The VO loss channels of V2O2+ and V3O3+ are multiple-photon processes at both 532 and 266 nm.
基金Project(51104186)supported by the National Natural Science Foundation of ChinaProject(2016JJ2142)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘To recycle vanadium and chromium from the V?Cr-bearing reducing slag,the thermodynamics of separating V(IV)and Cr(III)at 298 K was summarized in the form of potential-pH diagram and activity-pH diagram.The potential-pH diagrams of V-Mn-H2O and Cr-Mn-H2O systems show that the electrode potential of MnO2/Mn2+is higher than that of VO2+/VO2+but lower than that of Cr2O7 2-/Cr3+,which proves that it is feasible to selectively oxidize low valent vanadium using MnO2.The activity-pH diagrams of V(V)-H2O and Cr(III)-H2O systems show that the precipitation pH of V(V)is far lower than that of Cr(III),and therefore V(V)and Cr(III)can be separated through precipitation method.Based on the thermodynamic analysis,the flowsheet of recovery of vanadium and chromium from the V-Cr-bearing reducing slag is designed.
基金Supported by the National Natural Science Foundation of China (No. 29792073-3).
文摘The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response technique. The reaction intermediates, buterie and furan, were found in the reaction effluent under near industrial feed condition (3% butane+15%O2), while dihydrofuran was detected at high butane concentration (12% butane, 5%O2). Some intermediates of MA decomposition were also identified. Detection of these intermediates shows that the vanadium phosphorus oxides are able to dehydrogenate butane to butene, and butene further to form MA. Based on these observations, a modified scheme of reaction network is proposed. The transient experiments show that butane in the gas phase may directly react with oxygen both on the surface and from the metal oxide lattice, without a proceeding adsorption step. Gas phase oxygen can be adsorbed and transformed to surface lattice oxygen but it can not participate in selective oxidation. Adsorbed oxygen leads to deep oxidation, while lattice oxygen leads to selective oxidation.
基金supported by the Science and Technology Plan Project of Hebei Province of China(16273703D)the Fundamental Research Funds for the Central Universities(2015ZD24,2017XS123)~~
文摘Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.
基金Projects(51374061,51074040)supported by the National Natural Science Foundation of ChinaProject(201202064)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(N120402004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experiments. Some fundamental experiments for extracting vanadium by FeClx as chlorinating agent were conducted over the temperature range of 900-1300 K under air or oxygen atmosphere. The results show that vanadium can be extracted by the selective chlorination, using FeClx, based on thermodynamic analysis and experiment. Vanadium extraction ratio first increases with the increase of temperature, and then decreases with the increase of temperature over the range of 900-1300 K under air or oxygen atmosphere. The higher molar ratio of FeCI3 to oxides (nchl:noxd) reacting with FeC13, the higher ratio of vanadium extraction. Under oxygen atmosphere, the vanadium extraction ratio is up to 32% at 1100 K for 2 h by using FeCI3 as chlorinating agent.
基金supported by the Science Challenge Project(TZ2016004)the National Natural Key Research and Development Program of China(2018YFC1900105 and 2017YFA0207002)Beijing Outstanding Young Scientist Program。
文摘Uranium extraction from seawater is of strategic significance for nuclear power generation.Amidoximebased functional adsorbents play indispensable roles in the recovery of seawater uranium with high efficiency.Nevertheless,balancing the adsorption capacity and selectivity is challenging in the presence of complicated interfering ions especially vanadium.Herein,a polyarylether-based covalent organic framework functionalized with open-chain amidoxime(COF-HHTF-AO)was synthesized with remarkable chemical stability and excellent crystallinity.Impressively,the adsorption capacity of COF-HHTF-AO towards uranium in natural seawater reached up to 5.12 mg/g,which is 1.61 times higher than that for vanadium.Detailed computational calculations revealed that the higher selectivity for uranium over vanadium originated from the specific bonding nature and coordination pattern with amidoxime.Combining enhanced adsorption capacity,excellent selectivity and ultrahigh stability,COF-HHTF-AO serves as a promising adsorbent for uranium extraction from the natural seawater.