Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from...Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from Nd:YAG laser along with its peening application has been performed.The design scheme of laser and the characteristic of laser beam transmission are presented and discussed.A pulse energy of 25 J with 15 ns pulse-width and a maximum peak power of 1660 k W laser system which use one oscillation and eight amplifiers has been achieved.Laser beam has a max divergence angle of 0.03 mrad,a pulse-to-pulse pulse-width stability of±0.1 ns,and the pulse-to-pulse energy stability factors of less than±2.8%.A low value of divergence means an easier modification of a nearly hat-top laser beam intensity profile and an easier transmission of laser beam.To evaluate the performance of the laser system,several metal materials are processed.Laser peening quality and efficiency are analyzed by using an optical microscope,a transmission electron microscope,and an X-ray diffraction device.The processing results show that the performance of this laser system is excellent.展开更多
The microstructure of nickel-base alloy C-276 irradiated at 500 ℃ with 300 keY self-ions (Ni^+) to a peak displacement damage of 4.5 displacements per atom was investigated by transmission electron microscopy. Bot...The microstructure of nickel-base alloy C-276 irradiated at 500 ℃ with 300 keY self-ions (Ni^+) to a peak displacement damage of 4.5 displacements per atom was investigated by transmission electron microscopy. Both black spots and dislocation loops were observed. The black spots were identified as small dislocation loops, with a density of (8.2±0.2)x10^15 cm^-3 and the average loop size of about 15 nm. An increase of dislocation loop density would lead to the increase of the hardness in C-276 alloy, and the increment in yield strength was estimated by the dispersed barrier-hardening model. In [110] orientation, Burgers vectors of the dislocation loops were determined, and it was found that they were predominantly (a/2)〈110〉. In contrast to other nickel-base alloys, no voids were observed in C-276 alloy after being irradiated at elevated temperatures.展开更多
基金supported by the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2012AA041310)
文摘Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from Nd:YAG laser along with its peening application has been performed.The design scheme of laser and the characteristic of laser beam transmission are presented and discussed.A pulse energy of 25 J with 15 ns pulse-width and a maximum peak power of 1660 k W laser system which use one oscillation and eight amplifiers has been achieved.Laser beam has a max divergence angle of 0.03 mrad,a pulse-to-pulse pulse-width stability of±0.1 ns,and the pulse-to-pulse energy stability factors of less than±2.8%.A low value of divergence means an easier modification of a nearly hat-top laser beam intensity profile and an easier transmission of laser beam.To evaluate the performance of the laser system,several metal materials are processed.Laser peening quality and efficiency are analyzed by using an optical microscope,a transmission electron microscope,and an X-ray diffraction device.The processing results show that the performance of this laser system is excellent.
基金supported by the National Basic Research Program of China(No.2007CB2009800)the National Natural Science Foundation of China(Nos.11075119and11275140)+1 种基金the Fundamental Research Funds for the Central Universities(No.20102020201000013)the National Magnetic Confinement Fusion Program(No.2011GB108009)
文摘The microstructure of nickel-base alloy C-276 irradiated at 500 ℃ with 300 keY self-ions (Ni^+) to a peak displacement damage of 4.5 displacements per atom was investigated by transmission electron microscopy. Both black spots and dislocation loops were observed. The black spots were identified as small dislocation loops, with a density of (8.2±0.2)x10^15 cm^-3 and the average loop size of about 15 nm. An increase of dislocation loop density would lead to the increase of the hardness in C-276 alloy, and the increment in yield strength was estimated by the dispersed barrier-hardening model. In [110] orientation, Burgers vectors of the dislocation loops were determined, and it was found that they were predominantly (a/2)〈110〉. In contrast to other nickel-base alloys, no voids were observed in C-276 alloy after being irradiated at elevated temperatures.