Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperatu...Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP.展开更多
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi...The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.展开更多
The main purpose of this work was to obtain Sm-Sr nickelates nanoparticles with Ruddelsden-Popper type structures obtained by a simple process such as gelatin synthesis. The powders were calcinated at 900 ℃ and chara...The main purpose of this work was to obtain Sm-Sr nickelates nanoparticles with Ruddelsden-Popper type structures obtained by a simple process such as gelatin synthesis. The powders were calcinated at 900 ℃ and characterized by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and high-resolution transmission electron microscopy techniques. The effect of chemical substitution of the Sm^3+ by Sr^2+ ions on the structural properties of the powders was studied. The Rietveld's method was successfully applied for determination of the quantitative phase analysis of the powders and revealed that the main phase of the powders for different strontium content is of Ruddelsden-Popper type structure. A symmetry change from orthorhombic to tetragonal is observed as increasing strontium.展开更多
In order to increase the supply of assimilated carbon to grain, a new stay-green wheat cultivar, Chuannong17 (CN17), with delayed leaf senescence, carrying wheat-rye 1RS.1BL translo- cated chromosome was developed. CN...In order to increase the supply of assimilated carbon to grain, a new stay-green wheat cultivar, Chuannong17 (CN17), with delayed leaf senescence, carrying wheat-rye 1RS.1BL translo- cated chromosome was developed. CN17 exhibited distinct differences in net photosynthetic rate (Pn), chlorophyll (Chl) content, malondialdehyde (MDA) content, activity of both superoxide dismutase (SOD) and catalase (CAT) during the grain filling stage, and flag leaf senescence compared with the control. The new cultivar maintained longer and higher photosyn- thetic competence compared with the control, and this aspect correlated with the difference in chloro-plast development. Moreover, the stay-green pheno-type of CN17 was also observed under natural growth conditions. Consequently, the coordination of the physiological, biochemical, and structural aspects in the stay-green cultivar produced higher seed weights and per-plant yield compared with the control cultivar.展开更多
The bio-limited forming technology, a new technology organically integrating microbiology, manufacturing science and materials science, is used in the manufacturing of magnetic or conductive microstructures of differe...The bio-limited forming technology, a new technology organically integrating microbiology, manufacturing science and materials science, is used in the manufacturing of magnetic or conductive microstructures of different standard shapes. This paper explores the feasibility of magnetizing microorganism with thermal decomposition method. The principle of thermal decomposition of iron pentacarbonyl has been adopted to investigate the cells of Spirulina (a type of nature micro-helical microorganism) coated with pure iron. Further analysis have been conducted on the observations results of hollow micro-helical magnetic particles form, components and the phase structure obtained by using various tools including optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). Results showed that Spirulina cells could be coated with iron particles after the completion of thermal decomposition process, with well-kept shape of natural helixes and consistent components of different sampling points on the surface layer and thickness of layer. After the heat treatment at 700°C, the type of the surface iron layer formed was α-Fe. The paper also investigates the kinetics of the cell magnetization technology by thermal decomposition.展开更多
A facile and green approach has been developed for the in situ synthesis of hybrid nanomaterials based on dendrite-shaped Pd nanostructures supported on graphene (RG). The as-synthesized hybrid nanomaterials (RG-Pd...A facile and green approach has been developed for the in situ synthesis of hybrid nanomaterials based on dendrite-shaped Pd nanostructures supported on graphene (RG). The as-synthesized hybrid nanomaterials (RG-PdnDs) have been thoroughly characterized by high resolution transmission electron microscopy, X-ray photoelectron spectroscop)~ atomic force microscop)~ Raman spectroscopy and electrochemical techniques. The mechanism of formation of such dendrite- shaped Pd nanostructures on the graphene support has been elucidated using transmission electron microscopy (TEM) measurements. The RG induces the formation of, and plays a decisive role in shaping, the dendrite morphology of Pd nanostructures on its surface. Cyclic voltammetry and chronoamperometry techniques have been employed to evaluate the electrochemical performance of RG-PdnDs towards oxidation of methanol. The electrochemical (EC) activities of RG-PdnDs are compared with graphene-supported spherical-shaped Pd nanostructures, Pd nanodendrites alone and a commercial available Pd/C counterpart. The combined effect of the graphene support and the dendrite morphology of RG-PdnDs triggers the high electrocatalytic activity and results in robust tolerance to CO poisoning.展开更多
Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and pho...Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and photocatalytic properties of TNAs were characterized by using TEM, SEM, XRD and photodegradation of methylene blue. It was found that the morphology and structure of TNAs could be significantly influenced by the anodization time and applied voltage. The obtained tube length was found to be proportional to anodization time, and the calculated growth rate of nanotubes was 0.6 m/h. The microstructure analysis demonstrated that the diameter and thickness of the nanotubes increased with the increase of anodization voltage. The growth mechanism of TNAs was also proposed according to the observed relationship between current density and time during anodization. As expected, the obtained TNAs showed a higher photocatalytic activity than the commercial TiO 2 P25 nanoparticles.展开更多
基金Supported by the National High Technology Research and Development Program of China (2007AA 10Z350) and the National Natural Science Foundation of China (20976103).
文摘Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP.
基金Project(51171209)supported by the National Natural Science Foundation of China
文摘The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.
文摘The main purpose of this work was to obtain Sm-Sr nickelates nanoparticles with Ruddelsden-Popper type structures obtained by a simple process such as gelatin synthesis. The powders were calcinated at 900 ℃ and characterized by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and high-resolution transmission electron microscopy techniques. The effect of chemical substitution of the Sm^3+ by Sr^2+ ions on the structural properties of the powders was studied. The Rietveld's method was successfully applied for determination of the quantitative phase analysis of the powders and revealed that the main phase of the powders for different strontium content is of Ruddelsden-Popper type structure. A symmetry change from orthorhombic to tetragonal is observed as increasing strontium.
基金We also express our gratitude for financial support from The National Natural Science Foundation of China(Grant No.30671136)the"948"Plan Program of China.
文摘In order to increase the supply of assimilated carbon to grain, a new stay-green wheat cultivar, Chuannong17 (CN17), with delayed leaf senescence, carrying wheat-rye 1RS.1BL translo- cated chromosome was developed. CN17 exhibited distinct differences in net photosynthetic rate (Pn), chlorophyll (Chl) content, malondialdehyde (MDA) content, activity of both superoxide dismutase (SOD) and catalase (CAT) during the grain filling stage, and flag leaf senescence compared with the control. The new cultivar maintained longer and higher photosyn- thetic competence compared with the control, and this aspect correlated with the difference in chloro-plast development. Moreover, the stay-green pheno-type of CN17 was also observed under natural growth conditions. Consequently, the coordination of the physiological, biochemical, and structural aspects in the stay-green cultivar produced higher seed weights and per-plant yield compared with the control cultivar.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 2007B32)the National High Technology Research and Development Program of China (Grant No. 2009AA043804)
文摘The bio-limited forming technology, a new technology organically integrating microbiology, manufacturing science and materials science, is used in the manufacturing of magnetic or conductive microstructures of different standard shapes. This paper explores the feasibility of magnetizing microorganism with thermal decomposition method. The principle of thermal decomposition of iron pentacarbonyl has been adopted to investigate the cells of Spirulina (a type of nature micro-helical microorganism) coated with pure iron. Further analysis have been conducted on the observations results of hollow micro-helical magnetic particles form, components and the phase structure obtained by using various tools including optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). Results showed that Spirulina cells could be coated with iron particles after the completion of thermal decomposition process, with well-kept shape of natural helixes and consistent components of different sampling points on the surface layer and thickness of layer. After the heat treatment at 700°C, the type of the surface iron layer formed was α-Fe. The paper also investigates the kinetics of the cell magnetization technology by thermal decomposition.
文摘A facile and green approach has been developed for the in situ synthesis of hybrid nanomaterials based on dendrite-shaped Pd nanostructures supported on graphene (RG). The as-synthesized hybrid nanomaterials (RG-PdnDs) have been thoroughly characterized by high resolution transmission electron microscopy, X-ray photoelectron spectroscop)~ atomic force microscop)~ Raman spectroscopy and electrochemical techniques. The mechanism of formation of such dendrite- shaped Pd nanostructures on the graphene support has been elucidated using transmission electron microscopy (TEM) measurements. The RG induces the formation of, and plays a decisive role in shaping, the dendrite morphology of Pd nanostructures on its surface. Cyclic voltammetry and chronoamperometry techniques have been employed to evaluate the electrochemical performance of RG-PdnDs towards oxidation of methanol. The electrochemical (EC) activities of RG-PdnDs are compared with graphene-supported spherical-shaped Pd nanostructures, Pd nanodendrites alone and a commercial available Pd/C counterpart. The combined effect of the graphene support and the dendrite morphology of RG-PdnDs triggers the high electrocatalytic activity and results in robust tolerance to CO poisoning.
基金financially supported by the National Natural Science Foundation of China (51072189, 21003111, 21003112)Natural Science Foundation of Zhejiang Province (Y4090507)Scientific Research Foundation of Education Department of Zhejiang Province(Y201018867)
文摘Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and photocatalytic properties of TNAs were characterized by using TEM, SEM, XRD and photodegradation of methylene blue. It was found that the morphology and structure of TNAs could be significantly influenced by the anodization time and applied voltage. The obtained tube length was found to be proportional to anodization time, and the calculated growth rate of nanotubes was 0.6 m/h. The microstructure analysis demonstrated that the diameter and thickness of the nanotubes increased with the increase of anodization voltage. The growth mechanism of TNAs was also proposed according to the observed relationship between current density and time during anodization. As expected, the obtained TNAs showed a higher photocatalytic activity than the commercial TiO 2 P25 nanoparticles.