Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circ...Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.展开更多
Based on the full vector complex coupled mode theory, a detailed analysis is made on the transmission spectrum characteristics of tilted long period fiber gratings. New transmission peaks are observed, which are locat...Based on the full vector complex coupled mode theory, a detailed analysis is made on the transmission spectrum characteristics of tilted long period fiber gratings. New transmission peaks are observed, which are located beside the long wavelength side of each transmission peak in the transmission spectrum of normal long period fiber gratings. The emerging transmission peaks are quite sensitive to both the grating tilted angle and the surrounding refractive index, and the corresponding relationship is discussed. Furthermore, a novel sensing characteristic is investigated about the tilted long period fiber gratings, which is related to the transmission resonant wavelength and peak amplitude.展开更多
基金Projects(11164007,61275174)supported by the National Natural Science Foundation of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China+1 种基金Project(20132BAB212007)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ11107)supported by Scientific Foundation of Jiangxi Education Department,China
文摘Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.
文摘Based on the full vector complex coupled mode theory, a detailed analysis is made on the transmission spectrum characteristics of tilted long period fiber gratings. New transmission peaks are observed, which are located beside the long wavelength side of each transmission peak in the transmission spectrum of normal long period fiber gratings. The emerging transmission peaks are quite sensitive to both the grating tilted angle and the surrounding refractive index, and the corresponding relationship is discussed. Furthermore, a novel sensing characteristic is investigated about the tilted long period fiber gratings, which is related to the transmission resonant wavelength and peak amplitude.