A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by control...A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by controlling irrigation and using a mobile rain shelter in a neutral loam, meadow soil to determine the effects on leaf water status, membrane permeability and enzymatic antioxidant system for different growth stages. The results indicated that drought stress relied on drought intensity and duration, with more severe drought stress creating more serious effects on maize. Compared with well-watered conditions, during the silking and blister stages moderate stress did not significantly change the relative water content (RWC) and did change significantly the relative conductivity (RC) (P < 0.05) of the leaves; however, severe stress did significantly decrease (P < 0.01) the leaf RWC and increase (P < 0.01) membrane permeability (leaf relative conductivity). Furthermore, under severe drought stress antioxidant enzyme activities declined significantly (P < 0.01) in later stages, namely for superoxide dismutase (SOD) the tasseling and blister stages, for peroxidase (POD) the milk stage, and for catalase (CAT) during the tasseling, blister, and milk stages. Meanwhile, membrane lipid peroxidation (measured as malondialdehyde content) significantly increased (P < 0.01) in all stages.展开更多
To investigate the correlation and difference between Paspalum notatum’s leaf and root under drought adversity,this study tested the physiological responses of wild Paspalum notatum’s leaf and root under 0(CK),1,3,5...To investigate the correlation and difference between Paspalum notatum’s leaf and root under drought adversity,this study tested the physiological responses of wild Paspalum notatum’s leaf and root under 0(CK),1,3,5,7,14,21,and 28 d drought stress treatment.These physiological responses include osmotic regulating substance,antioxidant enzyme activity,malonaldehyde content,cell membrane permeability,and chlorophyll content.According to the results,the soluble protein content,proline concentration,malonaldehyde content,cell membrane permeability and CAT activity in Paspalum notatum’s leaf and root tended to increase with the prolongation of drought stress;the soluble sugar content and SOD activity first increased and then decreased;POD dropped gradually;the contents of chlorophyll a,b and total chlorophyll first declined,then mounted,and lastly dropped again.During the early stage of drought stress,SOD and CAT acted as the main antioxidant enzymes in Paspalum notatum’s leaf and root.However,with the aggravation of drought stress the predominant antioxidant enzymes became SOD in the root system whereas CAT and POD in the leaf.It implicates drought has a strong influence on root’s CAT and leaf’s SOD and POD.Leaf is the major organ regulating the osmosis and photosynthesis of Paspalum notatum.The findings can provide a useful theoretical basis for improving Paspalum notatum’s drought tolerance.展开更多
The activity of whole-cell biocatalysts is strongly compromised by the cell envelope, which is a permeability harrier against the diffusion of substrates and products. Although common chemical or physical permeahiliza...The activity of whole-cell biocatalysts is strongly compromised by the cell envelope, which is a permeability harrier against the diffusion of substrates and products. Although common chemical or physical permeahilization methods used in cultured cells enhance cell permeability, these methods inevitably add several extra processing steps after cell cultivation, as well as impede large scale processing. To increase membrane permeability and cell- bound glutamate decarboxylase (GAD) activity of recombinant Escherichia coil (BL21 (DE3)-pET28a-gadB) cells without the need for an additional permeabilization step, we investigated the permeabilizing effects of adding cell wall synthesis inhibitors or suffactants to the culture media. Ampidllin was the most effective at improving cell-bound GAD activity of the BL21 (DE3)-pET28a-gadB, although it decreased the cell biomass yield. The best permeabilization effect was observed using an ampicillin concentration of 5 pg. ml-1. Using this concentration, the cell hiomass did decrease by 40.58%, but the cell-bound GAD activity of BL21 (DE3)-pET28a-gadB and total cell-bound GAD activity per milliliter of culture was enhanced by 6.24- and 3.64-fold, respectively. Treatment ofBL21 (DE3)-pET28a-gadB cells with 5 tag.ml 1 ampicillin resulted in structural changes to the cell envelope, but did not substantially affect GAD expression. By entrapping the ampicillin-treated cells in an open pore gelation matrix, which is a polymer derived from polyvinyl alcohol (PVA), alginate, and boric acid, the transfor- mation rate of γ-aminobutyric acid (GABA) at the 10th cycle produced by immobilized and permeabilized cells remained 46% of the first cycle. GAD activity of the immobilized, permeabilized cells remained over 90% after 30 days of storage at 4 ℃.展开更多
Voltage-dependent anion channel (VDAC)I is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein comple...Voltage-dependent anion channel (VDAC)I is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 ex- pression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and BcI-XL, indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome e release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDACl-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.展开更多
Hyperpermeability is a crux of pathogenesis of sudden lung edema in many pulmonary disorders. especially in acute lung injury and adult respiratory distress syndrome(ARDS). Using our modified method for assessment of ...Hyperpermeability is a crux of pathogenesis of sudden lung edema in many pulmonary disorders. especially in acute lung injury and adult respiratory distress syndrome(ARDS). Using our modified method for assessment of pulmonary vascular permeability. we observed the effects of xanthine with xanthine oxidase(X-XO) perfused in rat pulmonary artery and the protection of vasoactive intestinal polypeptide(VIP) against the injury of pulmonary vascular permeabilrty. After addition of xanthine oxidase in the perfusate reservoir containing xanthine ̄(125) I-albumin leak index ( ̄(125)IALI)was remarkably increased while peak airway pressure(Paw) was not significantly increased, and perfusion pressure of pulmonary artery(Ppa)and lung wet/dry weight ratio(W/D) were only slightly increased. Xanthine plus xanthine oxidase also increased thromboxane B_2(TX B_2) and 6-keto-prostaglandin F_(1α)(6-keto -PGF_(1α)) in the perfusate. Treatment with VIP obviously reduced or totally prevented all signs of injury. Simultaneously, VIP also diminished or abolished the associated generation of arachidonate products. The results indicated that VIP has potent protective activity against injury of pulmonary vascular permeability and may be a physiological modulator of inflammatory damage to vascular endothelium associated with toxic oxygen metacolites.展开更多
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999043407)the National Natural Science Foundation of China (No. 40231018)
文摘A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by controlling irrigation and using a mobile rain shelter in a neutral loam, meadow soil to determine the effects on leaf water status, membrane permeability and enzymatic antioxidant system for different growth stages. The results indicated that drought stress relied on drought intensity and duration, with more severe drought stress creating more serious effects on maize. Compared with well-watered conditions, during the silking and blister stages moderate stress did not significantly change the relative water content (RWC) and did change significantly the relative conductivity (RC) (P < 0.05) of the leaves; however, severe stress did significantly decrease (P < 0.01) the leaf RWC and increase (P < 0.01) membrane permeability (leaf relative conductivity). Furthermore, under severe drought stress antioxidant enzyme activities declined significantly (P < 0.01) in later stages, namely for superoxide dismutase (SOD) the tasseling and blister stages, for peroxidase (POD) the milk stage, and for catalase (CAT) during the tasseling, blister, and milk stages. Meanwhile, membrane lipid peroxidation (measured as malondialdehyde content) significantly increased (P < 0.01) in all stages.
基金Supported by National Key Research&Development Project(2016YFC0502603,2017YFD0502101-3)National Natural Science Foundation of China(31602005)+2 种基金Science and Technology Support Project of Guizhou Province(Qiankehe Support[2016]2516,Qiankehe Cheng Zhuan [2015]5324-2)Scientific and Technol-ogical Innovation Talents Team Construction Project(Qiankehe Platform Talents[2016]5617)Guizhou Province Outstanding Youth and Scientifictechnological Talents Cultivation Project(Qiankehe Ren[2015]02)~~
文摘To investigate the correlation and difference between Paspalum notatum’s leaf and root under drought adversity,this study tested the physiological responses of wild Paspalum notatum’s leaf and root under 0(CK),1,3,5,7,14,21,and 28 d drought stress treatment.These physiological responses include osmotic regulating substance,antioxidant enzyme activity,malonaldehyde content,cell membrane permeability,and chlorophyll content.According to the results,the soluble protein content,proline concentration,malonaldehyde content,cell membrane permeability and CAT activity in Paspalum notatum’s leaf and root tended to increase with the prolongation of drought stress;the soluble sugar content and SOD activity first increased and then decreased;POD dropped gradually;the contents of chlorophyll a,b and total chlorophyll first declined,then mounted,and lastly dropped again.During the early stage of drought stress,SOD and CAT acted as the main antioxidant enzymes in Paspalum notatum’s leaf and root.However,with the aggravation of drought stress the predominant antioxidant enzymes became SOD in the root system whereas CAT and POD in the leaf.It implicates drought has a strong influence on root’s CAT and leaf’s SOD and POD.Leaf is the major organ regulating the osmosis and photosynthesis of Paspalum notatum.The findings can provide a useful theoretical basis for improving Paspalum notatum’s drought tolerance.
基金Supported by the grants from the National Natural Science Foundation of China(21176220,20876143,31470793)the Natural Science Foundation of Zhejiang Province(Z13B060008)the Key Technology Research and Development Project of Ningbo(2011C11023)
文摘The activity of whole-cell biocatalysts is strongly compromised by the cell envelope, which is a permeability harrier against the diffusion of substrates and products. Although common chemical or physical permeahilization methods used in cultured cells enhance cell permeability, these methods inevitably add several extra processing steps after cell cultivation, as well as impede large scale processing. To increase membrane permeability and cell- bound glutamate decarboxylase (GAD) activity of recombinant Escherichia coil (BL21 (DE3)-pET28a-gadB) cells without the need for an additional permeabilization step, we investigated the permeabilizing effects of adding cell wall synthesis inhibitors or suffactants to the culture media. Ampidllin was the most effective at improving cell-bound GAD activity of the BL21 (DE3)-pET28a-gadB, although it decreased the cell biomass yield. The best permeabilization effect was observed using an ampicillin concentration of 5 pg. ml-1. Using this concentration, the cell hiomass did decrease by 40.58%, but the cell-bound GAD activity of BL21 (DE3)-pET28a-gadB and total cell-bound GAD activity per milliliter of culture was enhanced by 6.24- and 3.64-fold, respectively. Treatment ofBL21 (DE3)-pET28a-gadB cells with 5 tag.ml 1 ampicillin resulted in structural changes to the cell envelope, but did not substantially affect GAD expression. By entrapping the ampicillin-treated cells in an open pore gelation matrix, which is a polymer derived from polyvinyl alcohol (PVA), alginate, and boric acid, the transfor- mation rate of γ-aminobutyric acid (GABA) at the 10th cycle produced by immobilized and permeabilized cells remained 46% of the first cycle. GAD activity of the immobilized, permeabilized cells remained over 90% after 30 days of storage at 4 ℃.
文摘Voltage-dependent anion channel (VDAC)I is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 ex- pression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and BcI-XL, indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome e release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDACl-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.
文摘Hyperpermeability is a crux of pathogenesis of sudden lung edema in many pulmonary disorders. especially in acute lung injury and adult respiratory distress syndrome(ARDS). Using our modified method for assessment of pulmonary vascular permeability. we observed the effects of xanthine with xanthine oxidase(X-XO) perfused in rat pulmonary artery and the protection of vasoactive intestinal polypeptide(VIP) against the injury of pulmonary vascular permeabilrty. After addition of xanthine oxidase in the perfusate reservoir containing xanthine ̄(125) I-albumin leak index ( ̄(125)IALI)was remarkably increased while peak airway pressure(Paw) was not significantly increased, and perfusion pressure of pulmonary artery(Ppa)and lung wet/dry weight ratio(W/D) were only slightly increased. Xanthine plus xanthine oxidase also increased thromboxane B_2(TX B_2) and 6-keto-prostaglandin F_(1α)(6-keto -PGF_(1α)) in the perfusate. Treatment with VIP obviously reduced or totally prevented all signs of injury. Simultaneously, VIP also diminished or abolished the associated generation of arachidonate products. The results indicated that VIP has potent protective activity against injury of pulmonary vascular permeability and may be a physiological modulator of inflammatory damage to vascular endothelium associated with toxic oxygen metacolites.