Using Schroedinger-Maxwell formalism, we propose and analyze an opticalfour-wave mixing (FWM) scheme for the generation of coherent light in a coherent six-level atomicmedium based on dual electromagnetically induced ...Using Schroedinger-Maxwell formalism, we propose and analyze an opticalfour-wave mixing (FWM) scheme for the generation of coherent light in a coherent six-level atomicmedium based on dual electromagnetically induced transparency (EIT). We show that the significantlyenhanced conversion efficiency enabled by ultraslow propagation of pump waves has no directrelationship with the single-photon detuning, which is different from the FWM with a single EIT. Themost important feature is that our scheme is also capable of inhibiting and delaying the onset ofthe detrimental three-photon destructive interference that looks like a recent scheme [Phys. Rev.Lett. 91 (2003) 243902] and may be used for generating short-wave-length coherent radiation.展开更多
We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hybrid systems formed by a driven superconducting circuit QED system and a mechanical resonator,or a driven opto...We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hybrid systems formed by a driven superconducting circuit QED system and a mechanical resonator,or a driven optomechanical system and a superconducting qubit.We find that both the mechanical resonator and the superconducting qubit can result in the transparency to a weak probe field in such hybrid systems when a strong driving field is applied to the cavity.We also find that the weak probe field can be amplified in some parameter regimes.We further study the statistical properties of the output field via the degrees of second-order coherence.We find that the nonclassicality of the output field strongly depends on the system parameters.Our studies show that one can control single-photon transmission in the optomechanical system via a tunable artificial atom or in the circuit QED system via a mechanical resonator.展开更多
Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we pres...Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.展开更多
文摘Using Schroedinger-Maxwell formalism, we propose and analyze an opticalfour-wave mixing (FWM) scheme for the generation of coherent light in a coherent six-level atomicmedium based on dual electromagnetically induced transparency (EIT). We show that the significantlyenhanced conversion efficiency enabled by ultraslow propagation of pump waves has no directrelationship with the single-photon detuning, which is different from the FWM with a single EIT. Themost important feature is that our scheme is also capable of inhibiting and delaying the onset ofthe detrimental three-photon destructive interference that looks like a recent scheme [Phys. Rev.Lett. 91 (2003) 243902] and may be used for generating short-wave-length coherent radiation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10975080,61025022,61174084 and 61134008)
文摘We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hybrid systems formed by a driven superconducting circuit QED system and a mechanical resonator,or a driven optomechanical system and a superconducting qubit.We find that both the mechanical resonator and the superconducting qubit can result in the transparency to a weak probe field in such hybrid systems when a strong driving field is applied to the cavity.We also find that the weak probe field can be amplified in some parameter regimes.We further study the statistical properties of the output field via the degrees of second-order coherence.We find that the nonclassicality of the output field strongly depends on the system parameters.Our studies show that one can control single-photon transmission in the optomechanical system via a tunable artificial atom or in the circuit QED system via a mechanical resonator.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274132,11547208the Science Foundation of China Three Gorges University
文摘Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.