If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency ...If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.展开更多
We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapo...We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapor of 87 Rb. Moreover we discuss interactions of multi-dressed states. The experimental results agree well with the theoretical analysis.展开更多
We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden d...We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2005) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.展开更多
Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we pres...Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.展开更多
Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are...Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electrom^gnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.10775100 and 10974137
文摘If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.
文摘We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapor of 87 Rb. Moreover we discuss interactions of multi-dressed states. The experimental results agree well with the theoretical analysis.
文摘We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2005) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274132,11547208the Science Foundation of China Three Gorges University
文摘Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.
基金Supported by the Science Foundation of Guizhou Province under Grant Nos.LKM(2013)19 and (2014)2090
文摘Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electrom^gnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing.