Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a c...Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a cathode block.Thermal stress field was calculated by the other slice model of the cell at the end of the heating-up.Then stresses coupling thermal and sodium expansion were considered after 30 d start-up.The results indicate that sodium penetrates to the bottom of the cathode block after 30 d start-up.The semi-graphitic carbon block has the largest stress at the thermal stage.After 30 d start-up the anthracitic carbon has the greatest sodium expansion stress and the graphitized carbon has the lowest sodium expansion stress.Sodium penetration can cause larger deformation and stress in the cathode carbon block than thermal expansion.展开更多
Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet...Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet that breaks the coal and slots the coal seam during the process of retreat drilling achieves pressure relief and permeability increase.Improved efficiency of gas extraction from a field test,high gas coal seam was observed.Investigating the theory of pressure relief and permeability increase required analyzing the characteristics of the double power slotting process and the effects of coal pressure relief and permeability increase.The influence of confining pressure on coal physical properties was examined by using FLAC3D software code to simulate changes of coal stress within the tool destruction area.The double power joint drilling method was modeled.Field experiments were performed and the effects are analyzed.This research shows that there is an ''islanding effect'' in front of the joint double power drill and slotting equipment.The failure strength of the coal seam is substantially reduced within the tool destruction area.Drilling depths are increased by 72% and the diameter of the borehole is increased by 30%.The amount of powdered coal extracted from the drill head increases by 17 times when using the new method.A 30 day total flow measurement from the double power drilled and slotted bores showed that gas extraction increased by 1.3 times compared to the standard drilled bores.Gas concentrations increased from 30% to 60% and were more stable so the overall extraction efficiency increased by a factor of two times.展开更多
基金Project(50374081) supported by the National Natural Science Foundation of China
文摘Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a cathode block.Thermal stress field was calculated by the other slice model of the cell at the end of the heating-up.Then stresses coupling thermal and sodium expansion were considered after 30 d start-up.The results indicate that sodium penetrates to the bottom of the cathode block after 30 d start-up.The semi-graphitic carbon block has the largest stress at the thermal stage.After 30 d start-up the anthracitic carbon has the greatest sodium expansion stress and the graphitized carbon has the lowest sodium expansion stress.Sodium penetration can cause larger deformation and stress in the cathode carbon block than thermal expansion.
基金supports provided by the National Key Basic Research and Development Program of China (No. 2011CB201205)the National Natural Science Foundation of China (No. 51074161)the Independent research of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining & Technology (No. SKLCRSM08X03)
文摘Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet that breaks the coal and slots the coal seam during the process of retreat drilling achieves pressure relief and permeability increase.Improved efficiency of gas extraction from a field test,high gas coal seam was observed.Investigating the theory of pressure relief and permeability increase required analyzing the characteristics of the double power slotting process and the effects of coal pressure relief and permeability increase.The influence of confining pressure on coal physical properties was examined by using FLAC3D software code to simulate changes of coal stress within the tool destruction area.The double power joint drilling method was modeled.Field experiments were performed and the effects are analyzed.This research shows that there is an ''islanding effect'' in front of the joint double power drill and slotting equipment.The failure strength of the coal seam is substantially reduced within the tool destruction area.Drilling depths are increased by 72% and the diameter of the borehole is increased by 30%.The amount of powdered coal extracted from the drill head increases by 17 times when using the new method.A 30 day total flow measurement from the double power drilled and slotted bores showed that gas extraction increased by 1.3 times compared to the standard drilled bores.Gas concentrations increased from 30% to 60% and were more stable so the overall extraction efficiency increased by a factor of two times.