It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a rese...It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.展开更多
Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering...Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substan- tial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote con- trol, information fluxes, and process flexibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawa- ter desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.展开更多
An improved design method of pervious concrete was proposed to lower the deviation between the designed and actual porosity and maintain both mechanical property and permeability of pervious concrete. The improved des...An improved design method of pervious concrete was proposed to lower the deviation between the designed and actual porosity and maintain both mechanical property and permeability of pervious concrete. The improved design method is mainly based on the optimal volume ratio of paste to aggregate(VRPA), which was determined by testing the average thickness of cement paste coating aggregate. The performances of pervious concrete designed by the traditional method and the improved one were compared. The results show that with the increase of designed porosity, the reduction of compressive strength and flexural strength of pervious concrete designed by the improved method is significantly smaller than those designed by the traditional one. The maximum deviation between the designed and actual porosity of the pervious concrete by the improved method is only 1.54%, which is far less than 8.7% obtained by the traditional one. Micro-structural analysis shows that the porous distribution of pervious concrete designed by improved method exhibits better uniformity.展开更多
Different coastal sands of the city of El Jadida are used to filter wastewater from a cardboard manufacturing plant combined with fly ash and bottom ash (by-products of a local power plant). The performances of five...Different coastal sands of the city of El Jadida are used to filter wastewater from a cardboard manufacturing plant combined with fly ash and bottom ash (by-products of a local power plant). The performances of five matrices of these elements are compared in infiltration-percolation in vertical columns. The study of particle size sand is performed beforehand. The chemical and mineralogical composition of fly ash and bottom ash are produced by X-ray fluorescence and X-ray diffraction respectively. The wastewater samples were collected during a complete cycle of production of the cardboard. The heavy metals content before and after filtration was obtained by atomic emission spectrometry with inductively coupled plasma (ICP-AES). The parameters analyzed were: total suspended solids (TSS), organic matter COD, BODs, the potential hydrogen pH and heavy metals (iron, zinc and arsenic). The results are very conclusive and respect the essence of control required by Moroccan regulations (law 1606-06) related to discharges from the papermaking and cardboard industry.展开更多
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS val...The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.展开更多
AIM:To determine the effect of tumor necrosis factor alpha(TNF-α) on intestinal permeability(IP) in mice with fulminant hepatic failure(FHF),and the expression of tight junction proteins.METHODS:We selected D-lactate...AIM:To determine the effect of tumor necrosis factor alpha(TNF-α) on intestinal permeability(IP) in mice with fulminant hepatic failure(FHF),and the expression of tight junction proteins.METHODS:We selected D-lactate as an index of IP,induced FHF using D-galactosamine/lipopolysaccharide and D-galactosamine/TNF-α,assessed the results using an enzymatic-spectrophotometric method,transmission electron microscopy,immunohistochemistry,Western blotting and real-time quantitative polymerase chain reaction.The effect of the administration of antiTNF-α immunoglobulin G(IgG) antibody,before the administration of D-galactosamine/lipopolysaccharide,on TNF-α was also assessed.RESULTS:IP was significantly increased in the mouse model of FHF 6 h after injection(13.57 ± 1.70 mg/L,13.02 ± 1.97 mg/L vs 3.76 ± 0.67 mg/L,P = 0.001).Electron microscopic analysis revealed tight junction(TJ) disruptions,epithelial cell swelling,and atrophy of intestinal villi.Expression of occludin and claudin-1 mRNA was significantly decreased in both FHF models(occludin:0.57 ± 0.159 fold vs baseline,P = 0.000;claudin-1:0.3067 ± 0.1291 fold vs baseline,P = 0.003),as were the distribution density of proteins in the intestinal mucosa and the levels of occludin and claudin-1 protein(occludin:0.61 ± 0.0473 fold vs baseline,P = 0.000;claudin-1:0.6633 ± 0.0328 fold vs baseline,P = 0.000).Prophylactic treatment with antiTNF-α IgG antibody prevented changes in IP(4.50 ± 0.97 mg/L vs 3.76 ± 0.67 mg/L,P = 0.791),intestinal tissue ultrastructure,and the mRNA levels of occludin and claudin-1 expression(occludin:0.8865 ± 0.0274 fold vs baseline,P = 0.505;claudin-1:0.85 ± 0.1437 fold vs baseline,P = 0.1),and in the protein levels(occludin:0.9467 ± 0.0285 fold vs baseline,P > 0.05;claudin-1:0.9533 ± 0.0186 fold vs baseline,P = 0.148).CONCLUSION:Increased in IP stemmed from the downregulation of the TJ proteins occludin and claudin-1,and destruction of the TJ in the colon,which were induced by TNF-α in FHF mice.展开更多
Response surface methodology, according to CCD (central composite design), was used to determine the optimum processing conditions giving maximum water loss and minimum solid gain during osmotic dehydration of medla...Response surface methodology, according to CCD (central composite design), was used to determine the optimum processing conditions giving maximum water loss and minimum solid gain during osmotic dehydration of medlars in sucrose solution. The independent variables of osmotic dehydration were temperature (25-65 ℃), processing time (20-240 min), sugar concentration (45%-65% w/w) and blanching time (0-180 s). The optimum conditions were found to be: temperature = 55 ℃, time = 180 min, concentration = 60° Brix and blanching time = 30 s. At this optimum point, water loss, weight reduction and solid gain were found to be 74.12% and 7.136%, respectively.展开更多
This method of desalination is based as the previous one, i.e. It applies the possibilities of the laws of inorganic chemistry precisely the laws of the precipitation to desalinate any water containing salt, with prio...This method of desalination is based as the previous one, i.e. It applies the possibilities of the laws of inorganic chemistry precisely the laws of the precipitation to desalinate any water containing salt, with priority for seawater the most abundant source of water on our planet. It is good to remember that the industry always has used these laws for the preparation of certain compounds. As the above method, rather than consume energy such as reverse osmosis, distillation, electrodialysis, it requires no energy. On the contrary recycling products used delivers power.展开更多
The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimizati...The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaClz solution immersion time. The coefficient of determination (R2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g-mm/(m^2.h.kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.展开更多
Microsized single-crystalline Co3O4 has been synthesized by high-temperature hydrolysis of CoCD2H20 at 600℃. The samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) an...Microsized single-crystalline Co3O4 has been synthesized by high-temperature hydrolysis of CoCD2H20 at 600℃. The samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the as-prepared powders are microsized single-crystalline CO3O4 with cubic spinel structure. An increase in the high-temperature hydrolysis time results in the evolution of particle shapes from cube to quasi-sphere, and then to octahedron. The effect of NaCl additive on the surface morphologies of Co3O4 particles was experimentally investigated. The results indicate that the NaCl additive acts as an inert disperse phase in the high-temperature hydrolysis, and prevents the aggregation of Co3O4 particles effectively.展开更多
A general initial water penetration(seepage) fracture criterion for concrete is proposed to predict whether or not harmful water penetration(hydraulic fracturing),other than microcracking,will occur in concrete struct...A general initial water penetration(seepage) fracture criterion for concrete is proposed to predict whether or not harmful water penetration(hydraulic fracturing),other than microcracking,will occur in concrete structures in a severe high water pressure environment.The final regression,of the different macroscopic failure types in concrete to microscopic ModeⅠ c racking,allows the use of only one universal criterion to indicate the damage.Thus,a general initial water penetration fracture criterion is approximately defined as a strain magnitude of 1000×10-6,based on the concept of tensile strain derived from experimental results in the relevant literature.Then,the locations of harmful water penetration fracture(hydraulic fracture) in the high arch dam mass of the Jinping first class hydropower project are analyzed using the nonlinear finite element method(FEM) according to the proposed criterion.The proposed criterion also holds promise for other concrete structures in high water pressure environments.展开更多
Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (-5 min), low-cost, and easily scalable ben...Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (-5 min), low-cost, and easily scalable bench-top approach to the extraction of high-quality isolated SWCNTs from bundles and impurities in an aqueous dispersion. The extraction procedure, based on aqueous two-phase (ATP) separation, is widely applicable to any SWCNT source (tested on samples up to 1.7 nm in diameter) and independent of defect density, purity, diameter, and length. The extracted dispersions demonstrate that the removal of large aggregates, small bundles, and impurities is comparable to that by density gradient ultracentrifugation, but without the need for high-end instrumentation. Raman and fluorescence-excitation spectroscopy, single-nanotube fluorescence imaging, atomic force and transmission electron microscopy, and thermogravimetric analysis all confirm the high purity of the isolated SWCNTs. By predispersing the SWCNTs without sonication (only gentle stirring), full-length, pristine SWCNTs can be isolated (tested up to 20 μm). Hence, this simple ATP method will find immediate application in the generation of SWCNT materials for all levels of nanotube research and applications, from fundamental studies to high-performance devices.展开更多
基金Projects 2003BA613-07-05 supported by the Program of National "Fifteen" Science and Technology 04E7029 by the CNPC Innovation Foundation
文摘It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.
文摘Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substan- tial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote con- trol, information fluxes, and process flexibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawa- ter desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.
基金Projects(51978346,51778302)supported by the National Natural Science Foundation of ChinaProject(202002N3117)supported by the Ningbo Science and Technology Project,China。
文摘An improved design method of pervious concrete was proposed to lower the deviation between the designed and actual porosity and maintain both mechanical property and permeability of pervious concrete. The improved design method is mainly based on the optimal volume ratio of paste to aggregate(VRPA), which was determined by testing the average thickness of cement paste coating aggregate. The performances of pervious concrete designed by the traditional method and the improved one were compared. The results show that with the increase of designed porosity, the reduction of compressive strength and flexural strength of pervious concrete designed by the improved method is significantly smaller than those designed by the traditional one. The maximum deviation between the designed and actual porosity of the pervious concrete by the improved method is only 1.54%, which is far less than 8.7% obtained by the traditional one. Micro-structural analysis shows that the porous distribution of pervious concrete designed by improved method exhibits better uniformity.
文摘Different coastal sands of the city of El Jadida are used to filter wastewater from a cardboard manufacturing plant combined with fly ash and bottom ash (by-products of a local power plant). The performances of five matrices of these elements are compared in infiltration-percolation in vertical columns. The study of particle size sand is performed beforehand. The chemical and mineralogical composition of fly ash and bottom ash are produced by X-ray fluorescence and X-ray diffraction respectively. The wastewater samples were collected during a complete cycle of production of the cardboard. The heavy metals content before and after filtration was obtained by atomic emission spectrometry with inductively coupled plasma (ICP-AES). The parameters analyzed were: total suspended solids (TSS), organic matter COD, BODs, the potential hydrogen pH and heavy metals (iron, zinc and arsenic). The results are very conclusive and respect the essence of control required by Moroccan regulations (law 1606-06) related to discharges from the papermaking and cardboard industry.
基金Under the auspices of National Natural Science Foundation of China(No.41671339)
文摘The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.
基金Supported by National Ministry of Health of China,No.97100252
文摘AIM:To determine the effect of tumor necrosis factor alpha(TNF-α) on intestinal permeability(IP) in mice with fulminant hepatic failure(FHF),and the expression of tight junction proteins.METHODS:We selected D-lactate as an index of IP,induced FHF using D-galactosamine/lipopolysaccharide and D-galactosamine/TNF-α,assessed the results using an enzymatic-spectrophotometric method,transmission electron microscopy,immunohistochemistry,Western blotting and real-time quantitative polymerase chain reaction.The effect of the administration of antiTNF-α immunoglobulin G(IgG) antibody,before the administration of D-galactosamine/lipopolysaccharide,on TNF-α was also assessed.RESULTS:IP was significantly increased in the mouse model of FHF 6 h after injection(13.57 ± 1.70 mg/L,13.02 ± 1.97 mg/L vs 3.76 ± 0.67 mg/L,P = 0.001).Electron microscopic analysis revealed tight junction(TJ) disruptions,epithelial cell swelling,and atrophy of intestinal villi.Expression of occludin and claudin-1 mRNA was significantly decreased in both FHF models(occludin:0.57 ± 0.159 fold vs baseline,P = 0.000;claudin-1:0.3067 ± 0.1291 fold vs baseline,P = 0.003),as were the distribution density of proteins in the intestinal mucosa and the levels of occludin and claudin-1 protein(occludin:0.61 ± 0.0473 fold vs baseline,P = 0.000;claudin-1:0.6633 ± 0.0328 fold vs baseline,P = 0.000).Prophylactic treatment with antiTNF-α IgG antibody prevented changes in IP(4.50 ± 0.97 mg/L vs 3.76 ± 0.67 mg/L,P = 0.791),intestinal tissue ultrastructure,and the mRNA levels of occludin and claudin-1 expression(occludin:0.8865 ± 0.0274 fold vs baseline,P = 0.505;claudin-1:0.85 ± 0.1437 fold vs baseline,P = 0.1),and in the protein levels(occludin:0.9467 ± 0.0285 fold vs baseline,P > 0.05;claudin-1:0.9533 ± 0.0186 fold vs baseline,P = 0.148).CONCLUSION:Increased in IP stemmed from the downregulation of the TJ proteins occludin and claudin-1,and destruction of the TJ in the colon,which were induced by TNF-α in FHF mice.
文摘Response surface methodology, according to CCD (central composite design), was used to determine the optimum processing conditions giving maximum water loss and minimum solid gain during osmotic dehydration of medlars in sucrose solution. The independent variables of osmotic dehydration were temperature (25-65 ℃), processing time (20-240 min), sugar concentration (45%-65% w/w) and blanching time (0-180 s). The optimum conditions were found to be: temperature = 55 ℃, time = 180 min, concentration = 60° Brix and blanching time = 30 s. At this optimum point, water loss, weight reduction and solid gain were found to be 74.12% and 7.136%, respectively.
文摘This method of desalination is based as the previous one, i.e. It applies the possibilities of the laws of inorganic chemistry precisely the laws of the precipitation to desalinate any water containing salt, with priority for seawater the most abundant source of water on our planet. It is good to remember that the industry always has used these laws for the preparation of certain compounds. As the above method, rather than consume energy such as reverse osmosis, distillation, electrodialysis, it requires no energy. On the contrary recycling products used delivers power.
基金Supported by the Program for Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2009088)
文摘The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaClz solution immersion time. The coefficient of determination (R2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g-mm/(m^2.h.kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.
基金Project(50704038) supported by the National Natural Science Foundation of ChinaProject(108170) supported by the Key Foundation of Ministry of Education,China
文摘Microsized single-crystalline Co3O4 has been synthesized by high-temperature hydrolysis of CoCD2H20 at 600℃. The samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the as-prepared powders are microsized single-crystalline CO3O4 with cubic spinel structure. An increase in the high-temperature hydrolysis time results in the evolution of particle shapes from cube to quasi-sphere, and then to octahedron. The effect of NaCl additive on the surface morphologies of Co3O4 particles was experimentally investigated. The results indicate that the NaCl additive acts as an inert disperse phase in the high-temperature hydrolysis, and prevents the aggregation of Co3O4 particles effectively.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No 2007CB714104)the National Natural Science Foundation of China (Grant Nos 51079045, 50779009 and 51008114)
文摘A general initial water penetration(seepage) fracture criterion for concrete is proposed to predict whether or not harmful water penetration(hydraulic fracturing),other than microcracking,will occur in concrete structures in a severe high water pressure environment.The final regression,of the different macroscopic failure types in concrete to microscopic ModeⅠ c racking,allows the use of only one universal criterion to indicate the damage.Thus,a general initial water penetration fracture criterion is approximately defined as a strain magnitude of 1000×10-6,based on the concept of tensile strain derived from experimental results in the relevant literature.Then,the locations of harmful water penetration fracture(hydraulic fracture) in the high arch dam mass of the Jinping first class hydropower project are analyzed using the nonlinear finite element method(FEM) according to the proposed criterion.The proposed criterion also holds promise for other concrete structures in high water pressure environments.
文摘Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (-5 min), low-cost, and easily scalable bench-top approach to the extraction of high-quality isolated SWCNTs from bundles and impurities in an aqueous dispersion. The extraction procedure, based on aqueous two-phase (ATP) separation, is widely applicable to any SWCNT source (tested on samples up to 1.7 nm in diameter) and independent of defect density, purity, diameter, and length. The extracted dispersions demonstrate that the removal of large aggregates, small bundles, and impurities is comparable to that by density gradient ultracentrifugation, but without the need for high-end instrumentation. Raman and fluorescence-excitation spectroscopy, single-nanotube fluorescence imaging, atomic force and transmission electron microscopy, and thermogravimetric analysis all confirm the high purity of the isolated SWCNTs. By predispersing the SWCNTs without sonication (only gentle stirring), full-length, pristine SWCNTs can be isolated (tested up to 20 μm). Hence, this simple ATP method will find immediate application in the generation of SWCNT materials for all levels of nanotube research and applications, from fundamental studies to high-performance devices.