The purpose of this paper is to present a methodology for optimizing the geometry of the LED (light emitting diode) secondary lens. The research objective is to uniform the illumination distribution on a target plan...The purpose of this paper is to present a methodology for optimizing the geometry of the LED (light emitting diode) secondary lens. The research objective is to uniform the illumination distribution on a target plane for nonimaging application. In order to achieve this, a software that simulates ray tracing is used, in conjunction with a heuristic process for enhancing the optimized parameters that form the geometry of the LED secondary lens. Spherical lenses was opted for optimization due to its lower manufacture complexity.展开更多
Strong lensing is an effective way to probing the properties of dark energy.In this paper,we use the strong lensing data to constrain the f(T)theory,which is a new modified gravity to explain the present accelerating ...Strong lensing is an effective way to probing the properties of dark energy.In this paper,we use the strong lensing data to constrain the f(T)theory,which is a new modified gravity to explain the present accelerating cosmic expansion without the need of dark energy.In our discussion,the CMB and BAO data are also added to constrain model parameters tightly and three different f(T)models are studied.We find that strong lensing has an important role on constraining f(T)models,and once the CMB+BAO data is added,a tighter constraint is obtained.However,the consistency of our result with what is obtained from SNIa+CMB+BAO is actually model-dependent.展开更多
文摘The purpose of this paper is to present a methodology for optimizing the geometry of the LED (light emitting diode) secondary lens. The research objective is to uniform the illumination distribution on a target plane for nonimaging application. In order to achieve this, a software that simulates ray tracing is used, in conjunction with a heuristic process for enhancing the optimized parameters that form the geometry of the LED secondary lens. Spherical lenses was opted for optimization due to its lower manufacture complexity.
基金supported by the National Natural Science Foundation of China(Grant Nos.10935013,11175093,11222545 and 11075083)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.Z6100077 and R6110518)+3 种基金the National Basic Research Program of China(Grant No.2010CB832803)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0964)the Hunan Provincial Natural Science Foundation of China(Grant No.11JJ7001)the Program for the Key Discipline in Hunan Province
文摘Strong lensing is an effective way to probing the properties of dark energy.In this paper,we use the strong lensing data to constrain the f(T)theory,which is a new modified gravity to explain the present accelerating cosmic expansion without the need of dark energy.In our discussion,the CMB and BAO data are also added to constrain model parameters tightly and three different f(T)models are studied.We find that strong lensing has an important role on constraining f(T)models,and once the CMB+BAO data is added,a tighter constraint is obtained.However,the consistency of our result with what is obtained from SNIa+CMB+BAO is actually model-dependent.