The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties o...The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.展开更多
Fast Radio Bursts(FRBs)are new transient radio sources discovered recently.Because of the angular resolution restriction in radio surveys,no optical counter part has been identified yet so it is hard to determine the ...Fast Radio Bursts(FRBs)are new transient radio sources discovered recently.Because of the angular resolution restriction in radio surveys,no optical counter part has been identified yet so it is hard to determine the progenitor of FRBs.In this paper we propose to use radio lensing survey to constrain FRB progenitors.We show that,different types of progenitors lead to different probabilities for a FRB to be gravitationally lensed by dark matter halos in foreground galaxies,since different type progenitors result in different redshift distributions of FRBs.For example,the redshift distribution of FRBs arising from double stars shifts toward lower redshift than of the FRBs arising from single stars,because double stars and single stars have different evolution timescales.With detailed calculations,we predict that the FRB sample size for producing one lensing event varies significantly for different FRB progenitor models.We argue that this fact can be used to distinguish different FRB models and also discuss the practical possibility of using lensing observation in radio surveys to constrain FRB progenitors.展开更多
We have studied erbium germanosilicide (ErSiGe) Ohmic contacts on n-type Si_(1-x)Ge_x substrates with differing Ge concentrations (0≤x≤0.3).Thin layers of Ti (20 nm)/Er (20 nm) were deposited on Si_(1-x)Ge_x substra...We have studied erbium germanosilicide (ErSiGe) Ohmic contacts on n-type Si_(1-x)Ge_x substrates with differing Ge concentrations (0≤x≤0.3).Thin layers of Ti (20 nm)/Er (20 nm) were deposited on Si_(1-x)Ge_x substrates and then post-annealed at 600°C for 60 s to form a stable ErSiGe film.The structures of the ErSiGe films and ErSiGe/Si_(1-x)Ge_x interfaces were characterized by Transmission Electron Microscopy measurements (TEM).The TEM images showed that the thicknesses of ErSiGe films and the Si_(1-x)Ge_x substrates were about 60 and 50 nm,respectively.The ErSiGe/Si_(1-x)Ge_x structure had a smooth interface.Moreover,no agglomeration or Ge segregation was observed.The contact resistivity of the ErSiGe/Si_(1-x)Ge_x structures was measured by the specially designed four-terminal Kelvin structures.When the Ge concentration of Si_(1-x)Ge_x substrates increased from 10% to 30%,the specific contact resistivity (c) slightly decreased from 9.0×10 7 ·cm 2 to 7.4×10 7 ·cm 2,indicating that the Ge concentration is not the main effect on the c of the ErSiGe/Si_(1-x)Ge_x Ohmic contacts.展开更多
In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory lab...In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 x 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 x 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.展开更多
基金Project(2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.
基金supported by the National Basic Research Program of China(Grant No.2014CB845800)\the National Natural Science Foundation of China(Grants No.11373012)
文摘Fast Radio Bursts(FRBs)are new transient radio sources discovered recently.Because of the angular resolution restriction in radio surveys,no optical counter part has been identified yet so it is hard to determine the progenitor of FRBs.In this paper we propose to use radio lensing survey to constrain FRB progenitors.We show that,different types of progenitors lead to different probabilities for a FRB to be gravitationally lensed by dark matter halos in foreground galaxies,since different type progenitors result in different redshift distributions of FRBs.For example,the redshift distribution of FRBs arising from double stars shifts toward lower redshift than of the FRBs arising from single stars,because double stars and single stars have different evolution timescales.With detailed calculations,we predict that the FRB sample size for producing one lensing event varies significantly for different FRB progenitor models.We argue that this fact can be used to distinguish different FRB models and also discuss the practical possibility of using lensing observation in radio surveys to constrain FRB progenitors.
文摘We have studied erbium germanosilicide (ErSiGe) Ohmic contacts on n-type Si_(1-x)Ge_x substrates with differing Ge concentrations (0≤x≤0.3).Thin layers of Ti (20 nm)/Er (20 nm) were deposited on Si_(1-x)Ge_x substrates and then post-annealed at 600°C for 60 s to form a stable ErSiGe film.The structures of the ErSiGe films and ErSiGe/Si_(1-x)Ge_x interfaces were characterized by Transmission Electron Microscopy measurements (TEM).The TEM images showed that the thicknesses of ErSiGe films and the Si_(1-x)Ge_x substrates were about 60 and 50 nm,respectively.The ErSiGe/Si_(1-x)Ge_x structure had a smooth interface.Moreover,no agglomeration or Ge segregation was observed.The contact resistivity of the ErSiGe/Si_(1-x)Ge_x structures was measured by the specially designed four-terminal Kelvin structures.When the Ge concentration of Si_(1-x)Ge_x substrates increased from 10% to 30%,the specific contact resistivity (c) slightly decreased from 9.0×10 7 ·cm 2 to 7.4×10 7 ·cm 2,indicating that the Ge concentration is not the main effect on the c of the ErSiGe/Si_(1-x)Ge_x Ohmic contacts.
文摘In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 x 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 x 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.