The synthesis of high purity intermetallic FeAI nanoparticles using the flow-levitation (FL) method was reported. Iron and aluminium droplets were levitated stably at about 2 230℃. The morphology, clystal structure...The synthesis of high purity intermetallic FeAI nanoparticles using the flow-levitation (FL) method was reported. Iron and aluminium droplets were levitated stably at about 2 230℃. The morphology, clystal structure and chemical composition of FeAI nanoparticles were investigated by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction and energy dispersive spectrometry. The results show that the average particle size of these nanoparticles is about 34.5 nm. Measurements of the d-spacing from X-ray diffraction and electron diffraction studies confirm that the intermetallic nanoparticles have the same crystal structure (B2) as the bulk FeA1. A thin oxidation coating is formed around the particles when being exposed to air. Based on the XPS measurements, the surface coating of the FeAI nanoparticles is composed of Fe2O3 and FeAl2O4. Besides, hysteresis curve reveals that saturation magnetization (Ms) of FeA1 is 1.66 A/m2, and the coercivity is about 1.214×10^3 A/re.展开更多
Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentia...Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.展开更多
We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p...We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p+-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p^-segment length. Without a p+-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p+-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.展开更多
基金Project(10804101) supported by the National Natural Science Foundation of China
文摘The synthesis of high purity intermetallic FeAI nanoparticles using the flow-levitation (FL) method was reported. Iron and aluminium droplets were levitated stably at about 2 230℃. The morphology, clystal structure and chemical composition of FeAI nanoparticles were investigated by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction and energy dispersive spectrometry. The results show that the average particle size of these nanoparticles is about 34.5 nm. Measurements of the d-spacing from X-ray diffraction and electron diffraction studies confirm that the intermetallic nanoparticles have the same crystal structure (B2) as the bulk FeA1. A thin oxidation coating is formed around the particles when being exposed to air. Based on the XPS measurements, the surface coating of the FeAI nanoparticles is composed of Fe2O3 and FeAl2O4. Besides, hysteresis curve reveals that saturation magnetization (Ms) of FeA1 is 1.66 A/m2, and the coercivity is about 1.214×10^3 A/re.
基金This work was supported by the National Funds for Distinguished Young Scientists of China (No. 81325009) and National Nature Science Foundation of China (No. 81270168, No. 81227901), (Feng Cao BWS12J037), Innovation Team granted by Ministry of Education PRC (IRT1053), National Basic Research Program of China (2012CB518101). Shaanxi Province Program (2013K12-02-03, 2014KCT-20). The authors declare no conflict of interest.
文摘Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.
文摘We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p+-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p^-segment length. Without a p+-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p+-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.