基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低...基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低频滑动平均订正算法(LPSC)对模式的系统性误差进行订正;同时对SCMOC和订正后两种模式的逐小时气温预报效果进行了统计对比。结果表明:(1)ECMWF、CMA-MESO-3km模式对甘肃省逐小时气温的预报具有相对稳定的系统性误差,夜间预报准确率明显低于白天,主要表现为夜间预报显著偏高,白天为小的负偏差。(2)LPSC算法能够有效改善ECMWF和CMA-MESO-3km对甘肃省逐小时气温预报的系统性误差,订正效果显著。订正后ECMWF、CMA-MESO-3km的预报准确率分别较模式本身提高了20.24%、20.25%,平均误差减小至±0.3℃之内;空间分布亦表明,订正后全省平均误差均明显降低至±2℃之内。(3)同类产品对比检验表明:订正后ECMWF、CMA-MESO-3km两种逐小时气温预报产品的预报效果整体上均优于SCMOC,预报准确率分别较SCMOC高20.65%、13.55%,平均绝对误差在各个时次也明显低于SCMOC。技巧评分的空间分布表明,订正后ECMWF在全省大部分地方均为正技巧,其中酒泉南部山区可达80%以上;而订正后CMA-MESO-3km的预报效果各个季节分布存在差异,主要体现在陇中和陇东南地区,冬春季以弱的正技巧为主,夏秋季基本为负技巧。另外,业务应用结果表明,对于转折性天气过程,使用该方法需要特别注意。展开更多
文摘基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低频滑动平均订正算法(LPSC)对模式的系统性误差进行订正;同时对SCMOC和订正后两种模式的逐小时气温预报效果进行了统计对比。结果表明:(1)ECMWF、CMA-MESO-3km模式对甘肃省逐小时气温的预报具有相对稳定的系统性误差,夜间预报准确率明显低于白天,主要表现为夜间预报显著偏高,白天为小的负偏差。(2)LPSC算法能够有效改善ECMWF和CMA-MESO-3km对甘肃省逐小时气温预报的系统性误差,订正效果显著。订正后ECMWF、CMA-MESO-3km的预报准确率分别较模式本身提高了20.24%、20.25%,平均误差减小至±0.3℃之内;空间分布亦表明,订正后全省平均误差均明显降低至±2℃之内。(3)同类产品对比检验表明:订正后ECMWF、CMA-MESO-3km两种逐小时气温预报产品的预报效果整体上均优于SCMOC,预报准确率分别较SCMOC高20.65%、13.55%,平均绝对误差在各个时次也明显低于SCMOC。技巧评分的空间分布表明,订正后ECMWF在全省大部分地方均为正技巧,其中酒泉南部山区可达80%以上;而订正后CMA-MESO-3km的预报效果各个季节分布存在差异,主要体现在陇中和陇东南地区,冬春季以弱的正技巧为主,夏秋季基本为负技巧。另外,业务应用结果表明,对于转折性天气过程,使用该方法需要特别注意。