期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于逐级信息恢复网络的实时目标检测算法 被引量:2
1
作者 庞彦伟 余珂 +1 位作者 孙汉卿 曹家乐 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2022年第5期471-479,共9页
随着卷积神经网络的发展,目标检测算法成为计算机视觉领域的研究热点,基于深度学习的实时目标检测算法需要同时兼顾检测精度和检测速度两项指标.不基于先验框的实时目标检测算法Center Net大幅提高了检测速度,但是由于其直接对低分辨率... 随着卷积神经网络的发展,目标检测算法成为计算机视觉领域的研究热点,基于深度学习的实时目标检测算法需要同时兼顾检测精度和检测速度两项指标.不基于先验框的实时目标检测算法Center Net大幅提高了检测速度,但是由于其直接对低分辨率高层特征进行连续上采样,没有充分补充特征在下采样过程中丢失的空间细节信息,导致算法对目标定位不够准确,影响了检测精度.为解决这一问题,提出了一种基于逐级信息恢复网络(hierarchical information recovery network,HIRNet)的实时目标检测算法.该算法中,为对信息进行逐级恢复,设计了相邻层信息增强模块(adjacent layer information strength module,ALISM)和残差注意力特征融合(residual attentional feature fusion,RAFF)模块.通过构建ALISM模块,将中间层特征进行处理,分别为相邻层特征提供更多的空间细节信息和语义信息,提高低层特征的表达能力,输出更适宜进行信息恢复的特征.为进一步精确恢复损失的空间细节信息,HIRNet在上采样过程中逐级使用构建的RAFF模块,这一模块综合利用全局和局部注意力调整低层特征和高层特征的残差权重,再对两级特征进行加权融合,恢复高层特征在下采样过程中丢失的空间细节信息.在PASCAL VOC数据集和MS COCO数据集上的实验证明了所提算法的有效性.在MS COCO验证集上,HIRNet保证了检测的实时性,提升了算法检测性能,检测精度比Center Net算法提高了3.9%. 展开更多
关键词 目标检测 深度学习 卷积神经网络 不基于先验框 逐级信息恢复
下载PDF
可信平台上操作系统核心文件检测研究与实现 被引量:1
2
作者 伍江江 王志英 +1 位作者 戴葵 任江春 《微电子学与计算机》 CSCD 北大核心 2007年第9期109-112,共4页
对操作系统核心文件的检测是遵循TCG规范的可信计算平台的重要组成部分,因此提出了一种基于直接访问磁盘扇区数据来检测可信平台上操作系统核心文件完整性的方法。在系统实现中,使用了扇区检测优化技术和逐级恢复关键文件数据的方法,设... 对操作系统核心文件的检测是遵循TCG规范的可信计算平台的重要组成部分,因此提出了一种基于直接访问磁盘扇区数据来检测可信平台上操作系统核心文件完整性的方法。在系统实现中,使用了扇区检测优化技术和逐级恢复关键文件数据的方法,设置了扫描配置文件和管理完整性度量值的SFS(简单文件系统)来方便用户管理。测试结果表明系统能够快速发现操作系统核心文件是否被篡改,有效抵御病毒和木马的攻击破坏,实现灾难恢复。 展开更多
关键词 可信计算平台 核心文件检测 逐级恢复 简单文件系统 灾难恢复
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部