期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法 被引量:60
1
作者 张达敏 徐航 +2 位作者 王依柔 宋婷婷 王栎桥 《控制与决策》 EI CSCD 北大核心 2021年第5期1173-1180,共8页
针对鲸鱼优化算法(WOA)容易陷入局部最优解、收敛速度慢等缺陷,提出一种改进鲸鱼优化算法.首先,利用Circle混沌序列取代原始算法中随机产生的初始种群,提高初始个体的多样性;其次,提出一种逐维小孔成像反向学习策略,增加寻优位置的多样... 针对鲸鱼优化算法(WOA)容易陷入局部最优解、收敛速度慢等缺陷,提出一种改进鲸鱼优化算法.首先,利用Circle混沌序列取代原始算法中随机产生的初始种群,提高初始个体的多样性;其次,提出一种逐维小孔成像反向学习策略,增加寻优位置的多样性,提高算法摆脱局部最优的能力;最后,提出融合贝塔分布和逆不完全Γ函数的自适应权重,在保留鲸鱼优化算法优点的前提下,协调算法的搜索能力.通过对10个基准函数进行仿真实验,同时使用Wilcoxon检验、MAE等方法来评价改进后鲸鱼优化算法的性能,实验结果表明,改进算法在求解效率和稳定性等方面都有较大提升,同时,算法的寻优精度和收敛速度也比原始算法更优秀. 展开更多
关键词 鲸鱼优化算法 Circle混沌映射 逐维小孔成像反向学习 贝塔分布 自适应权重
原文传递
多策略鼠群优化算法的无人机三维航迹规划
2
作者 解瑞云 海本斋 《机械设计与制造》 北大核心 2024年第9期112-119,共8页
针对在复杂电力检测环境中无人机三维航迹规划问题,提出一种基于跳跃式自适应小孔成像反向学习鼠群优化(JAPRSO)算法的无人机三维航迹规划方法。JAPRSO算法引入了Sobol序列初始化种群以增强种群多样性;引入了非线性自适应因子实现动态... 针对在复杂电力检测环境中无人机三维航迹规划问题,提出一种基于跳跃式自适应小孔成像反向学习鼠群优化(JAPRSO)算法的无人机三维航迹规划方法。JAPRSO算法引入了Sobol序列初始化种群以增强种群多样性;引入了非线性自适应因子实现动态权衡局部开发和全局搜索能力;嵌入了跳跃式围捕猎物机制以避免算法陷入局部最优;同时,引入跳跃式自适应小孔成像反向学习追赶猎物机制以提高算法的全局寻优能力。仿真结果表明:所提出的路径规划方法寻优性能优于RSO算法、灰狼优化(GWO)算法,金枪鱼群优化(TSO)算法和海鸥优化(SOA)算法,能够有效地躲避威胁区,快速获得航迹代价最小的安全可行航迹,可适用于求解电力检测方面的无人机三维航迹规划问题。 展开更多
关键词 鼠群优化算法 无人机三航迹规划 非线性自适应因子 跳跃式围捕机制 自适应小孔成像反向学习
下载PDF
一种最优粒子逐维变异的粒子群优化算法 被引量:14
3
作者 罗强 季伟东 +1 位作者 徐浩天 孙小晴 《小型微型计算机系统》 CSCD 北大核心 2020年第2期259-263,共5页
针对粒子群算法(Particle Swarm Optimization,PSO)容易陷入局部最优、收敛速度过慢、精度低等问题,提出一种新的变异策略,对全局最优粒子进行逐维的重心反向学习变异.逐维变异降低了维间干扰,通过更新全局最优位置引领粒子向更好的位... 针对粒子群算法(Particle Swarm Optimization,PSO)容易陷入局部最优、收敛速度过慢、精度低等问题,提出一种新的变异策略,对全局最优粒子进行逐维的重心反向学习变异.逐维变异降低了维间干扰,通过更新全局最优位置引领粒子向更好的位置飞行,同时加强了种群的多样性.仿真实验与基于柯西变异的混合粒子群算法(HPSO)及重心反向粒子群优化算法(COPSO)在9个标准测试函数上进行了对比.实验表明逐维重心反向变异算法(DCOPSO)具有较高的收敛速度及精度. 展开更多
关键词 变异 重心反向学习 粒子群算法
下载PDF
基于反吸引速度更新机制的改进蜉蝣算法
4
作者 毛清华 王迎港 牛晓辉 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期1770-1783,共14页
针对蜉蝣算法(MA)前期收敛速度较慢、后期寻优精度不高等问题,提出一种基于反吸引速度更新机制的改进蜉蝣算法(MMOA)。采用改进型Tent混沌序列初始化蜉蝣种群,使蜉蝣分布更加均匀,提升了种群的多样性;结合MA的特点,引入反吸引速度更新... 针对蜉蝣算法(MA)前期收敛速度较慢、后期寻优精度不高等问题,提出一种基于反吸引速度更新机制的改进蜉蝣算法(MMOA)。采用改进型Tent混沌序列初始化蜉蝣种群,使蜉蝣分布更加均匀,提升了种群的多样性;结合MA的特点,引入反吸引速度更新机制指导蜉蝣速度更新,平衡算法的全局搜索和局部寻优能力,进而提升算法的收敛性能;对全局最优蜉蝣进行逐维的重心反向学习变异,降低各维度间的干扰,帮助算法跳出局部最优并加速收敛。基于12个标准测试函数和部分CEC2017测试函数进行对比仿真实验,结果表明:MMOA较灰狼优化(GWO)算法、MA等算法在收敛速度、寻优精度和稳定性等方面都具有明显优势。 展开更多
关键词 蜉蝣算法 改进Tent混沌 反吸引速度 变异 重心反向学习
下载PDF
基于改进布谷鸟算法的永磁同步电机参数辨识
5
作者 高雄 郭凯凯 《无线互联科技》 2024年第4期11-15,共5页
针对永磁同步电机中参数辨识精度不足以及速度较慢的问题,文章提出一种改进的布谷鸟算法实现对永磁同步电机的参数辨识。首先,采用Tent映射初始化种群;其次,采用动态发现概率调整布谷鸟蛋被发现的概率;最后,引入逐维反向学习策略,增强... 针对永磁同步电机中参数辨识精度不足以及速度较慢的问题,文章提出一种改进的布谷鸟算法实现对永磁同步电机的参数辨识。首先,采用Tent映射初始化种群;其次,采用动态发现概率调整布谷鸟蛋被发现的概率;最后,引入逐维反向学习策略,增强了算法的局部和全局寻优能力,同时加快了收敛速度。仿真分析表明,改进的布谷鸟算法相比于原算法,能更加有效地辨识永磁同步电机的电机参数。 展开更多
关键词 永磁同步电机 TENT映射 反向学习 参数辨识 布谷鸟算法
下载PDF
基于佳点集的改进麻雀搜索算法 被引量:6
6
作者 闫少强 杨萍 +2 位作者 朱东林 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第10期2790-2798,共9页
为改善麻雀搜索算法(SSA)初始种群质量和稳定性差,易陷入局部最优的缺点,提出一种基于佳点集的改进麻雀搜索算法(GSSA)。加入佳点集使初始种群更加均匀,提升了种群多样性;结合SSA算法特点引入改进的迭代局部搜索,在不降低原算法收敛速... 为改善麻雀搜索算法(SSA)初始种群质量和稳定性差,易陷入局部最优的缺点,提出一种基于佳点集的改进麻雀搜索算法(GSSA)。加入佳点集使初始种群更加均匀,提升了种群多样性;结合SSA算法特点引入改进的迭代局部搜索,在不降低原算法收敛速度快的基础上,使算法的搜索能力更加灵活;在算法中加入逐维透镜成像反向学习机制,减少各个维度间的干扰,帮助算法跳出局部最优并加速收敛。经12个测试函数仿真实验,并借助Wilcoxon秩和检验、平均误差M等证明了GSSA在寻优精度和稳定性等寻优性能都有较大的提升,且收敛速度更快。 展开更多
关键词 麻雀搜索算法 优化算法 佳点集 迭代局部搜索 透镜反向学习
下载PDF
大规模优化问题的改进花朵授粉算法 被引量:5
7
作者 李煜 郑娟 刘景森 《计算机科学与探索》 CSCD 北大核心 2020年第8期1427-1440,共14页
花朵授粉算法(FPA)寻优结构新颖,寻优能力良好,但求解高维优化问题易陷入"维数灾难"。为提高FPA求解大规模优化问题的性能,提出一种改进花朵授粉算法(IFPA)。采用反向学习策略增加种群多样性,充分搜索解空间,提高初始种群质量... 花朵授粉算法(FPA)寻优结构新颖,寻优能力良好,但求解高维优化问题易陷入"维数灾难"。为提高FPA求解大规模优化问题的性能,提出一种改进花朵授粉算法(IFPA)。采用反向学习策略增加种群多样性,充分搜索解空间,提高初始种群质量;在自花授粉阶段,发挥当代最优位置的牵引作用,减少算法迭代代价,提高搜索效率,提出避免维间干扰的方法,采用逐维随机扰动策略对花粉个体进行更新,整体评价后接受更优解,提高了算法局部迭代质量。IFPA仅需3~5个种群个体即可达到满意的优化效果,15个测试函数在100、1000和5000维下的仿真结果表明:IFPA的求解精度大幅提高,收敛速度明显加快,鲁棒性强,与FPA、PSO和BA的对比表明,改进算法在处理不同类型大规模优化问题上是具有竞争力的。 展开更多
关键词 花朵授粉算法 反向学习 随机扰动 间干扰 大规模优化
下载PDF
基于混沌的多策略优化麻雀算法及应用 被引量:4
8
作者 邬贵昌 韦文山 +2 位作者 李尚平 郭羿 吴超略 《微电子学与计算机》 2022年第12期21-30,共10页
针对原始麻雀搜索算法在寻优过程中出现多样性降低,难以跳出局部最优,以及收敛精度不够等问题,提出一种基于混沌的多策略优化麻雀算法.首先,通过Circle混沌映射进行种群初始化,生成分布更加均匀的麻雀种群,增加种群的多样性;其次,引入... 针对原始麻雀搜索算法在寻优过程中出现多样性降低,难以跳出局部最优,以及收敛精度不够等问题,提出一种基于混沌的多策略优化麻雀算法.首先,通过Circle混沌映射进行种群初始化,生成分布更加均匀的麻雀种群,增加种群的多样性;其次,引入自适应比例,对发现者的种群规模占种群总规模的比例进行动态变化,平衡算法的全局搜索与局部挖掘能力;然后引入Levy飞行改进发现者位置更新方式,提高算法的搜索范围与局部搜索能力,并且加快收敛于最优值的速度;最后,选择逐维变异与反向学习相融合的方式来扰动当前全局最优位置,通过贪婪算法来筛选出变异前后的最优值作为当前全局最优值,从而提高算法跳离局部最优的能力.本次选择12个基准函数和Wilcoxon秩和检验进行验证,并于六种其他算法进行对比,证明了以上多种策略对于算法的性能提升明显.同时,将该改进算法应用于工程实践中,本文选择压缩弹簧设计优化问题,验证所提改进算法在工程设计中的可行性与优越性. 展开更多
关键词 麻雀搜索算法 Circle映射 自适应比例 Levy飞行 变异 反向学习 压缩弹簧设计
下载PDF
基于多策略改进鼠群算法的机器人路径规划 被引量:2
9
作者 解瑞云 海本斋 《组合机床与自动化加工技术》 北大核心 2022年第10期50-54,共5页
鼠群优化(RSO)算法求解复杂环境下移动机器人路径规划问题时易出现早熟现象导致求解精度不足,针对此问题,提出一种多策略改进鼠群优化(MRSO)算法。首先,提出一种旋转小孔成像反向学习搜索策略,将其嵌入算法攻击猎物过程中对种群进行反... 鼠群优化(RSO)算法求解复杂环境下移动机器人路径规划问题时易出现早熟现象导致求解精度不足,针对此问题,提出一种多策略改进鼠群优化(MRSO)算法。首先,提出一种旋转小孔成像反向学习搜索策略,将其嵌入算法攻击猎物过程中对种群进行反向学习,提高算法全局搜索能力;其次,引入Iterative混沌RPOBL反向学习策略保证了算法的初始种群多样性,提高了算法初始寻优效率与收敛精度;最后,在算法追逐猎物过程中,采用“双平滑”和“双碗式”非线性自适应因子动态平衡了算法的全局搜索与局部探索,增强了算法局部和全局寻优能力。结果表明,在不同地图环境中,MRSO算法的路径寻优结果优于RSO、TSO和GWO算法,MRSO算法可快速和高效地解决复杂环境中移动机器人路径规划问题。 展开更多
关键词 鼠群优化算法 旋转小孔成像反向学习 Iterative混沌 双平滑非线性自适应因子 双碗式非线性自适应因子 移动机器人路径规划
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部