An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no...An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.展开更多
For safe and reliable operation of lithium-ion batteries in electric vehicles,the real-time monitoring of their internal states is important.The purpose of our study is to find an easily implementable,online identific...For safe and reliable operation of lithium-ion batteries in electric vehicles,the real-time monitoring of their internal states is important.The purpose of our study is to find an easily implementable,online identification method for lithium-ion batteries in electric vehicles.In this article,we propose an equivalent circuit model structure.Based on the model structure we derive the recursive mathematical description.The recursive extended least square algorithm is introduced to estimate the model parameters online.The accuracy and robustness are validated through experiments and simulations.Real-road driving cycle experiment shows that the proposed online identification method can achieve acceptable accuracy with the maximum error of less than 5.52%.In addition,it is proved that the proposed method can also be used to estimate the real-time SOH and SOC of the batteries.展开更多
基金Supported by the National Natural Science Foundation of China (60575009, 60574036)
文摘An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.
基金supported by the National High Technology Research and Development Program("863" Project)(Grant No.2011AA05A109)the International Science and Technology Cooperation Program of China(Grant Nos.2011DFA70570,2010DFA72760)the National Natural Science Foundation of China(Grant No.51007088)
文摘For safe and reliable operation of lithium-ion batteries in electric vehicles,the real-time monitoring of their internal states is important.The purpose of our study is to find an easily implementable,online identification method for lithium-ion batteries in electric vehicles.In this article,we propose an equivalent circuit model structure.Based on the model structure we derive the recursive mathematical description.The recursive extended least square algorithm is introduced to estimate the model parameters online.The accuracy and robustness are validated through experiments and simulations.Real-road driving cycle experiment shows that the proposed online identification method can achieve acceptable accuracy with the maximum error of less than 5.52%.In addition,it is proved that the proposed method can also be used to estimate the real-time SOH and SOC of the batteries.