期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于NSCT、KFCM和多模型LS-SVM的红外小目标检测 被引量:7
1
作者 吴一全 尹丹艳 吴诗婳 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第8期1704-1709,共6页
为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(lea... 为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(least squares support vector machine,LS-SVM)背景预测的检测方法。首先对红外小目标图像进行NSCT并去噪,提高图像的信噪比;然后通过基于核模糊C均值聚类的多模型LS-SVM预测去噪后红外图像中的背景,用去噪后的实际图像减去背景预测图像得到残差图像;接着提出基于递归最大类间绝对差的阈值选取算法分割残差图像;最后利用目标灰度的平稳性和运动轨迹的连续性进一步检测出真实的小目标。给出了实验结果与分析,并与现有的3种基于背景预测的小目标检测方法进行了比较。结果表明该方法具有更高的检测概率和信噪比增益。 展开更多
关键词 红外小目标检测 非下采样CONTOURLET变换 核模糊C均值聚类 最小二乘支持向量机 递归最大类间绝对差
下载PDF
基于核模糊聚类多模型LS-SVM背景预测的红外小目标检测 被引量:2
2
作者 尹丹艳 《物联网技术》 2021年第3期24-27,30,共5页
针对复杂背景中小目标的提取问题,提出了一种基于核模糊聚类多模型最小二乘支持向量机背景预测的红外小目标检测算法。首先,对训练样本用最近邻聚类法进行划分,获取聚类个数和初始聚类中心,并用核模糊C均值算法(KFCM)对聚类中心进行优化... 针对复杂背景中小目标的提取问题,提出了一种基于核模糊聚类多模型最小二乘支持向量机背景预测的红外小目标检测算法。首先,对训练样本用最近邻聚类法进行划分,获取聚类个数和初始聚类中心,并用核模糊C均值算法(KFCM)对聚类中心进行优化;其次,用LS-SVM计算模糊模型的回归参数,利用回归参数预测图像背景;之后,将原图像和预测图像相减得到残差图像;最后,依据最大类间绝对差选取阈值,从残差图像中分割出小目标。实验结果表明:文中算法相比传统基于模糊C均值(FCM)的小目标检测算法检测性能更优越。 展开更多
关键词 红外小目标 核模糊聚类 背景预测 最小二乘支持向量机 递归最大类间绝对差 回归参数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部