目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的...目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的空间特征;然后利用基于多头注意力的递归神经网络生成多上下文向量进行高层抽象特征提取;最后利用全连接层进行情感分类。在DEAP(Database for Emotion Analysis using Physiological signals)数据集上进行实验,CR-MCV在唤醒和效价维度上分类准确率分别为88.09%和89.30%。实验结果表明,CR-MCV在利用电极空间位置信息和不同时段情感状态显著性特征基础上,能够自适应地分配特征的注意力并强化情感状态显著性信息。展开更多
针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的...针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。展开更多
文摘目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的空间特征;然后利用基于多头注意力的递归神经网络生成多上下文向量进行高层抽象特征提取;最后利用全连接层进行情感分类。在DEAP(Database for Emotion Analysis using Physiological signals)数据集上进行实验,CR-MCV在唤醒和效价维度上分类准确率分别为88.09%和89.30%。实验结果表明,CR-MCV在利用电极空间位置信息和不同时段情感状态显著性特征基础上,能够自适应地分配特征的注意力并强化情感状态显著性信息。
文摘针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。